• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Research-status Report

Interacting topological phases and operator algebras

Research Project

Project/Area Number 19K14548
Research InstitutionTohoku University

Principal Investigator

ボーン クリストファー・ジャック  東北大学, 材料科学高等研究所, 助教 (20830110)

Project Period (FY) 2019-04-01 – 2023-03-31
Keywordsoperator algebras / ground state / spectral flow / K-theory
Outline of Annual Research Achievements

One-dimensional ground states of fermionic Hamiltonians were studied. A relationship was found between the topological phase of the ground state and the Z_2-valued spectral flow. These results were extended to infinite systems with higher order interactions using the split property and the study of states of the CAR C*-algebra. These results have been published in Reviews in Mathematical Physics.

In order to study wider symmetry classes, a KO-valued spectral flow was defined and its mathematical properties and relation to physics studied. This new spectral flow generalizes all previous spectral flow constructions. These results have been submitted and are currently under review.

A graded Cayley transform was also studied that maps between the different presentations of K-theory that emerge in the study of topological phases. The Cayley transform makes these maps explicit and computable in the examples of interest. These results have been submitted and are currently under review.

Current Status of Research Progress
Current Status of Research Progress

1: Research has progressed more than it was originally planned.

Reason

We have defined a torsion-valued index of order two to pure states of the CAR C*-algebra that satisfy the split property. Using results of Matsui, such states include the unique ground state of one-dimensional Hamiltonians with a spectral gap. In particular, such Hamiltonians may have higher-order interactions.

These results put us slightly ahead of our initially planned schedule and give us more time to consider further extensions and applications.

Strategy for Future Research Activity

We have defined topological phases for gapped fermionic ground states in infinite systems without any additional input data. Our next task is to consider the case of ground states with an on-site group symmetry and its connection to cohomology theory. We plan to undertake this research once again using the split property and an operator algebraic framework.

We also plan to further extend our studies of spectral flow and K-theory. Previous K-theory studies are usually applicable to free-fermionic Hamiltonians or quasi-free ground states. Our aim is to expand our K-theoretic framework to better accommodate systems with higher-order interactions.

We also plan to begin our studies on higher-dimensional lattice systems.

  • Research Products

    (12 results)

All 2020 2019 Other

All Int'l Joint Research (2 results) Journal Article (1 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 1 results) Presentation (8 results) (of which Invited: 7 results) Remarks (1 results)

  • [Int'l Joint Research] University of Erlangen-Nuremberg/University of Bonn(ドイツ)

    • Country Name
      GERMANY
    • Counterpart Institution
      University of Erlangen-Nuremberg/University of Bonn
  • [Int'l Joint Research] University of Wollonong(オーストラリア)

    • Country Name
      AUSTRALIA
    • Counterpart Institution
      University of Wollonong
  • [Journal Article] On Z_2-indices for ground states of fermionic chains2020

    • Author(s)
      Bourne Chris、Schulz-Baldes Hermann
    • Journal Title

      Reviews in Mathematical Physics

      Volume: 32 Pages: 2050028-1~69

    • DOI

      10.1142/S0129055X20500282

    • Peer Reviewed / Int'l Joint Research
  • [Presentation] The Cayley transform and K-theory2020

    • Author(s)
      Chris Bourne
    • Organizer
      University of Erlangen-Nuremberg Mathematical Physics Seminar
    • Invited
  • [Presentation] The Cayley transform in complex, real and graded K-theory2020

    • Author(s)
      Chris Bourne
    • Organizer
      Bonn University Seminar in Global Analysis and Operator Algebras
    • Invited
  • [Presentation] Spectral flow, index theory and free-fermionic topological phases2020

    • Author(s)
      Chris Bourne
    • Organizer
      Cologne University Theoretical Physics Seminar
    • Invited
  • [Presentation] Spectral flow and topological phases2020

    • Author(s)
      Chris Bourne
    • Organizer
      Noncommutative Geometry, Analysis, and Topological Insulators
    • Invited
  • [Presentation] Spectral flow and topological phases2020

    • Author(s)
      Chris Bourne
    • Organizer
      Topological phenomena in non-Hermitian and non-equilibrium systems
    • Invited
  • [Presentation] Z_2-indices of ground states of fermionic chains2019

    • Author(s)
      Chris Bourne
    • Organizer
      Topological Phases of Interacting Systems
    • Invited
  • [Presentation] Groupoid cocycles and Delone dynamical systems2019

    • Author(s)
      Chris Bourne
    • Organizer
      Groupoids, Graphs and Algebras
  • [Presentation] The Cayley transform and K-theory2019

    • Author(s)
      Chris Bourne
    • Organizer
      Operator Algebras and Noncommutative Geometry seminar, University of Wollongong
    • Invited
  • [Remarks] Personal academic webpage

    • URL

      https://sites.google.com/site/khomologyzone/home

URL: 

Published: 2021-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi