2023 Fiscal Year Final Research Report
Finite element methods for nonlinear partial differential equations on curved domains
Project/Area Number |
19K14590
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 12040:Applied mathematics and statistics-related
|
Research Institution | Nagoya University |
Principal Investigator |
|
Project Period (FY) |
2019-04-01 – 2024-03-31
|
Keywords | 有限要素法 / 偏微分方程式 / 数値解法 / 誤差評価 / 不連続Galerkin時間離散化法 |
Outline of Final Research Achievements |
I investigated the finite element method for partial differential equations with smooth boundaries and related topics from various viewpoints. In particular, I obtained many important resultsfor elliptic and parabolic partial differential equations, such as the maximum norm estimates and the discontinuous Galerkin time-stepping method. In addition, I studied numerical methods for solving time-evolving curves and I applied them to mathematical analysis of a minimizing problem for curves.
|
Free Research Field |
数値解析学
|
Academic Significance and Societal Importance of the Research Achievements |
有限要素法はその柔軟性や数学的な明快さから, シミュレーション分野で広く用いられている数値解法である. 有限要素法に対する数学的な解析は, シミュレーションの妥当性を数学的に保証するために重要な研究である. 本研究成果は特に, 現実問題のシミュレーションの問題設定として現れうる問題を考えているため, シミュレーション分野において重要な役割を果たしている.
|