• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Finite element methods for nonlinear partial differential equations on curved domains

Research Project

  • PDF
Project/Area Number 19K14590
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 12040:Applied mathematics and statistics-related
Research InstitutionNagoya University

Principal Investigator

Kemmochi Tomoya  名古屋大学, 工学研究科, 助教 (80824664)

Project Period (FY) 2019-04-01 – 2024-03-31
Keywords有限要素法 / 偏微分方程式 / 数値解法 / 誤差評価 / 不連続Galerkin時間離散化法
Outline of Final Research Achievements

I investigated the finite element method for partial differential equations with smooth boundaries and related topics from various viewpoints. In particular, I obtained many important resultsfor elliptic and parabolic partial differential equations, such as the maximum norm estimates and the discontinuous Galerkin time-stepping method. In addition, I studied numerical methods for solving time-evolving curves and I applied them to mathematical analysis of a minimizing problem for curves.

Free Research Field

数値解析学

Academic Significance and Societal Importance of the Research Achievements

有限要素法はその柔軟性や数学的な明快さから, シミュレーション分野で広く用いられている数値解法である. 有限要素法に対する数学的な解析は, シミュレーションの妥当性を数学的に保証するために重要な研究である. 本研究成果は特に, 現実問題のシミュレーションの問題設定として現れうる問題を考えているため, シミュレーション分野において重要な役割を果たしている.

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi