2021 Fiscal Year Final Research Report
Edge states using ultracold atoms
Project/Area Number |
19K14639
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 13020:Semiconductors, optical properties of condensed matter and atomic physics-related
|
Research Institution | Institute for Molecular Science |
Principal Investigator |
Sugawa Seiji 分子科学研究所, 光分子科学研究領域, 助教 (70768556)
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Keywords | 冷却原子 / 人工ゲージ場 / ボース・アインシュタイン凝縮体 / 量子制御 / 幾何学的位相 / 非可換ベリー位相 / リュードベリ状態 |
Outline of Final Research Achievements |
In physics and chemistry, geometrical and topological properties of quantum systems can characterize their physical properties and even determines their macroscopic behaviors. Here, using Bose-Einstein condensate of rubidium atoms dressed with precisely-tuned microwave-fields, we successfully quantum-engineered a non-Abelian SU(2) gauge field. By adiabatically controlling the Hamiltonian such that the state follows an adiabatic closed trajectory, we observed a Wilczek-Zee phase, a non-Abelian extension of Berry's geometric phase. We successfully evaluated the Wilczek-Zee phase using quantum process tomography and characterized them in a gauge-independent way in terms of the Wilson loop.
|
Free Research Field |
冷却原子実験
|
Academic Significance and Societal Importance of the Research Achievements |
量子系の幾何学的・トポロジカルな特性は、物理や化学など分野横断的に議論されており、物性を特徴づけ、マクロな振る舞いさえも決定するなど重要性が高い。冷却原子系は量子シミュレータ、量子コンピュータ、量子センサーのプラットフォームとして注目されており、本研究成果は、非可換な幾何学的位相を用いたスピン・デバイスや量子シミュレーション、量子センサー、ホロノミック量子コンピューティングへの応用が期待される。
|