• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Final Research Report

Realization of fast large-scale parallel welding mechanics analysis using nonlinear domain decomposition method

Research Project

  • PDF
Project/Area Number 19K14871
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 18030:Design engineering-related
Research InstitutionThe University of Electro-Communications

Principal Investigator

Yusa Yasunori  電気通信大学, 大学院情報理工学研究科, 助教 (70756395)

Project Period (FY) 2019-04-01 – 2022-03-31
Keywords並列有限要素法 / 領域分割法 / 非線形有限要素法 / 熱弾塑性解析 / 大変形弾塑性解析 / 溶接 / 金属積層造形
Outline of Final Research Achievements

A parallel nonlinear finite element analysis method for welding problems and metal additive manufacturing problems were proposed. In the welding and metal additive manufacturing analyses, zero-stiffness finite elements are placed in advance at the portion to be welded. An implementation method that considers the zero-stiffness finite elements appropriately in the domain decomposition method was developed. The proposed implementation method was also applied to damage analysis and topology computation. Furthermore, a framework of fast parallel large-deformation elastic-plastic analysis was developed. Using quasi-Newton-based nonlinear finite element methods, which were studied extensively in the 1970s and the 1980s, an analysis framework that is based on an implementation method for present distributed-memory parallel computers and on a modern large-deformation elastic-plastic material model was proposed.

Free Research Field

計算力学

Academic Significance and Societal Importance of the Research Achievements

溶接問題、金属積層造形問題など、機械の製造時の複雑な力学挙動を従来よりも短い計算時間で解析できるようになり、過度に安全側でない合理的な設計に貢献できる可能性がある。また、破壊時などの他の力学挙動に対しても適用できるような解析技術を提案したため、合理的な保守などにも貢献できる可能性がある。また、領域分割法は実際にスーパーコンピュータで使用されている基盤的な解析手法であるため、本研究成果によって、スーパーコンピュータを用いた複雑な力学挙動の解析の発展が期待できる。

URL: 

Published: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi