2020 Fiscal Year Final Research Report
Development of a low-power deep-learning chip using adiabatic superconducting technology
Project/Area Number |
19K15041
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 21060:Electron device and electronic equipment-related
|
Research Institution | Yokohama National University |
Principal Investigator |
Chen Olivia 横浜国立大学, 先端科学高等研究院, 特任教員(助教) (70837856)
|
Project Period (FY) |
2019-04-01 – 2021-03-31
|
Keywords | 電子工学 / 超伝導エレクトロニクス / 集積回路工学 |
Outline of Final Research Achievements |
In this research, we proposed an extremely low-power deep learning chip by combining Stochastic Computing (SC), an approximate computing scheme with the adiabatic quantum magnetic flux parametron (AQFP), a low-power superconducting technology. As the research results, we have developed an automated design tool chain for large-scale superconducting circuits design, prototyped the proposed deep learning chip, and demonstrated its operation at low temperatures.
|
Free Research Field |
電子デバイス・電子機器
|
Academic Significance and Societal Importance of the Research Achievements |
人工知能の急速な発展に伴う情報量が爆発的増大し,莫大な電力が消費されてしまいます.本研究成果では,半導体回路に対して5桁以上消費電力効率を持つ超伝導回路を基盤技術とする上,近似計算である新たな計算方式との連携を通じて,1Wで千兆回演算級のエネルギー効率を有する新たな超低電力AIシステムの開発に挑戦します.また,本技術の応用の拡大,引いては地球温暖化の防止にもつながると考えます.
|