• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Research-status Report

大規模な非凸最適化問題に対する効率の良いアルゴリズムの開発と機械学習等への応用

Research Project

Project/Area Number 19K15247
Research InstitutionThe Institute of Statistical Mathematics

Principal Investigator

田中 未来  統計数理研究所, 数理・推論研究系, 准教授 (40737053)

Project Period (FY) 2019-04-01 – 2023-03-31
Keywords数理最適化
Outline of Annual Research Achievements

(1) 非凸非平滑な DC 最適化問題に対する Bregman 距離を用いた DC アルゴリズムについて研究を進め, 信号処理の問題に応用した. 具体的には暗中逆畳み込みのための最適化問題を DC 最適化問題として再定式化し, この問題に対して適当な Bregman 距離を提案し, 大域的収束性の理論保証をもつアルゴリズムを提案した.
(2) 多レベル最適化問題において下位問題を勾配法で近似した際に勾配法の反復回数を無限に大きくするとき, 近似問題の最適解が元の問題の最適解にある意味で収束することを示し, このことを利用したアルゴリズムを設計した. また, この方法をデータ汚染を考慮したハイパーパラメータ最適化に対して適用し, 頑健な解が得られることを示した.
(3) 微分不可能な最適化問題に対する平滑化加速近接勾配法の収束解析を行なった.
(4) 最適制御問題に現れるスパース最適化問題に対する効率のよいアルゴリズムを開発し, その収束解析を行なった.

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

理論面と応用面の両面からの研究が進行しており, 研究は順調に進展していると言える. 昨年度投稿していた論文が採録されるとともに, 新規に複数の論文を準備・投稿しており, 成果も順調に出ている.

Strategy for Future Research Activity

(1) 2 錐間の大域的な最小角を計算するための分枝限定法を実装し, 凸錐の幾何学における未解決問題にアプローチする.
(2) 非凸非平滑最適化問題に対するアルゴリズムの高速化を行なう.
(3) 複素信号処理に現れる非凸非平滑最適化問題への応用を目指し, 複素変数実数値関数の一般化方向微分を定義して, その理論的性質を明らかにする.
(4) いわゆる Nesterov の加速法について研究を進め, より高速な最適化アルゴリズムを考案する.

Causes of Carryover

新型コロナウイルス感染症拡大の影響で物品の購入が困難になった上, 各種出張が中止となったため, 次年度使用額が生じた. 状況が改善された後の物品調達や 出張旅費として使用することを検討している.

  • Research Products

    (15 results)

All 2022 2021

All Journal Article (7 results) (of which Peer Reviewed: 4 results,  Open Access: 3 results) Presentation (8 results) (of which Int'l Joint Research: 4 results,  Invited: 3 results)

  • [Journal Article] Efficient iterative method for SOAV minimization problem with linear equality and box constraints and its linear convergence2022

    • Author(s)
      Toyoda Mitsuru and Tanaka Mirai
    • Journal Title

      Journal of the Franklin Institute

      Volume: 359 Pages: 2206--2228

    • DOI

      10.1016/j.jfranklin.2022.01.014

    • Peer Reviewed / Open Access
  • [Journal Article] 箱型制約および線形等式制約をもつ SOAV 最小化問題に対する効率のよいアルゴリズムと線形収束性2022

    • Author(s)
      豊田充, 田中未来
    • Journal Title

      統計数理研究所共同研究リポート

      Volume: 453 Pages: 65--83

  • [Journal Article] DC 最適化問題に対する Bregman 距離を用いた近接アルゴリズムと複素最適化問題への拡張2022

    • Author(s)
      髙橋翔大, 福田光浩, 田中未来
    • Journal Title

      統計数理研究所共同研究リポート

      Volume: 453 Pages: 28--38

  • [Journal Article] 非リプシッツな関数を含む最適化問題に対する近接劣勾配法2022

    • Author(s)
      豊田充, 田中未来
    • Journal Title

      制御部門マルチシンポジウム講演論文集

      Volume: 9 Pages: 1G1-2

  • [Journal Article] An analysis of hot‐started ADMM for linear MPC2021

    • Author(s)
      Toyoda Mitsuru and Tanaka Mirai
    • Journal Title

      IET Control Theory & Applications

      Volume: 15 Pages: 1999--2016

    • DOI

      10.1049/cth2.12174

    • Peer Reviewed / Open Access
  • [Journal Article] A gradient method for multilevel optimization2021

    • Author(s)
      Ryo Sato, Mirai Tanaka, and Akiko Takeda
    • Journal Title

      Advances in Neural Information Processing Systems

      Volume: 34 Pages: 7522--7533

    • Peer Reviewed / Open Access
  • [Journal Article] Sum of l2-norms based modeling for discrete-valued optimal control2021

    • Author(s)
      Mitsuru Toyoda and Mirai Tanaka
    • Journal Title

      Proceedings of the SICE Annual Conference

      Volume: 2021 Pages: 316--319

    • Peer Reviewed
  • [Presentation] A gradient method for multilevel optimization2022

    • Author(s)
      Mirai Tanaka
    • Organizer
      The 1st APORS Youth Forum
    • Int'l Joint Research / Invited
  • [Presentation] A gradient method for multilevel optimization2022

    • Author(s)
      Mirai Tanaka
    • Organizer
      ISI-ISM-ISSAS Joint Conference 2022
    • Int'l Joint Research / Invited
  • [Presentation] 可変平滑化パラメータを用いた加速近接勾配法2022

    • Author(s)
      豊田充, 田中未来
    • Organizer
      研究集会 最適化: モデリングとアルゴリズム
  • [Presentation] A gradient method for multilevel optimization2021

    • Author(s)
      Mirai Tanaka
    • Organizer
      Workshop on Continuous Optimization and Related Topics
    • Int'l Joint Research / Invited
  • [Presentation] A gradient method for multilevel optimization2021

    • Author(s)
      Ryo Sato, Mirai Tanaka, and Akiko Takeda
    • Organizer
      The 35th Conference on Neural Information Processing Systems
    • Int'l Joint Research
  • [Presentation] 2 錐間の大域的最小角を求めるための分枝限定法2021

    • Author(s)
      田中未来
    • Organizer
      確率・ 統計・ 行列ワークショップ 彦根 2021
  • [Presentation] 多レベル最適化問題に対する勾配法2021

    • Author(s)
      佐藤瞭, 田中未来, 武田朗子
    • Organizer
      京都大学数理解析研究所 研究集会 数理最適化の理論と応用の深化
  • [Presentation] 2 錐間の大域的最小角を求めるための分枝限定法2021

    • Author(s)
      田中未来
    • Organizer
      2021 年度 統計数理セミナー

URL: 

Published: 2022-12-28  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi