2021 Fiscal Year Final Research Report
Development of high-capacity cathodes for rechargeable batteries by controlling microstructure of oxides
Project/Area Number |
19K15307
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 26040:Structural materials and functional materials-related
|
Research Institution | Tohoku University |
Principal Investigator |
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Keywords | リチウムイオン電池 / 酸化物正極材料 |
Outline of Final Research Achievements |
Developing high-capacity electrode materials for rechargeable batteries is of great importance because of a wide range of applications such as electric vehicles, smart grids, etc. In this study, we investigated the role of microstructure that spontaneously forms in the oxide electrode materials and its effect on the electrode properties. Furthermore, we developed methods to control the formation of the microstructure and to evaluate elastic strain induced by the microstructures in the electrode materials. The results suggest that the microstructure is not only dependent on the thermal history of the oxide material during heat treatment, but can also be flexibly controlled by the configurational entropy, which can be controlled by mixing multiple elements. In addition, we also developed Bragg coherent diffraction imaging under electrochemical conditions, which enable us to analyze the strain induced in the material.
|
Free Research Field |
電気化学
|
Academic Significance and Societal Importance of the Research Achievements |
蓄電池の電極材料開発では,重量やコスト,環境負荷の観点から限られた元素種で材料の開発が行われており,電極特性の向上は頭打ちになりつつある.しかし,本研究が提案する酸化物の組織制御という新たな自由度により材料開発の柔軟性が高まり,軽さと容量を両立した材料の開発や,環境負荷の低く安価な元素で構成された高容量の材料の開発など,これまでになかった新たな電極材料の開発が期待できるとい点で,高い学術的意義を有する研究である.これらの電極材料の高性能化は,電気自動車などの高性能化に直結するため,社会的にも非常に重要である.
|