• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Quantum paradigms in hydrogen storage in nanostructures

Research Project

  • PDF
Project/Area Number 19K15397
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 28030:Nanomaterials-related
Research InstitutionThe University of Tokyo

Principal Investigator

ARGUELLES ELVIS  東京大学, 物性研究所, 特任研究員 (50816072)

Project Period (FY) 2019-04-01 – 2024-03-31
Keywordshydrogen / quantum effects / surface / first principles / rotational states / adsorption / chemisorption / potential energy surface
Outline of Final Research Achievements

Developing high-capacity, low-energy hydrogen storage remains challenging, hindering its widespread adoption as a green energy solution. Despite recent advancements in nanomaterials design, fundamental hurdles persist due to an incomplete understanding of hydrogen dynamics, notably the overlooked role of quantum effects. This study investigates quantum effects on hydrogen storage within nanostructures, aiming to design effective hydrogen storage nanomaterials by optimizing adsorption and desorption dynamics. Pd-functionalized graphene and graphitic carbon nitride (g-C3N4) emerge as promising candidates for hydrogen storage. Furthermore, we uncover the significant influence of hydrogen's vibrational and rotational states on its adsorption and desorption kinetics. These findings deepen our understanding of hydrogen molecule dynamics and offer insights for enhancing nanostructured materials design, extending beyond hydrogen storage to applications like catalysis.

Free Research Field

Surface and Interface Physics

Academic Significance and Societal Importance of the Research Achievements

この研究の重要性は、高容量で低エネルギーの水素貯蔵システムの開発における喫緊の課題に対処する点にあります。ナノ材料の設計に関する進展がある一方で、水素のダイナミクスに関する理解が不完全であり、特に量子効果に関しては未解決の問題が残っています。量子効果がナノ構造内の水素貯蔵に与える影響を探究し、Pd機能化グラフェンやg-C3N4などの材料を開発することで、本研究は水素貯蔵材料の設計と最適化に重要な示唆を提供し、持続可能なエネルギー貯蔵や触媒応用に向けた潜在的な解決策を提供している。

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi