• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2020 Fiscal Year Final Research Report

Prediction of Extended Hospital Stays Using a Deep Learning Algorithm Based on MR Images

Research Project

  • PDF
Project/Area Number 19K17178
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 52040:Radiological sciences-related
Research InstitutionTeikyo University

Principal Investigator

Shida Keiichi  帝京大学, 公私立大学の部局等, 講師 (40623286)

Project Period (FY) 2019-04-01 – 2021-03-31
Keywords入院長期化 / 予測 / MRI
Outline of Final Research Achievements

Patients who have surgery are hoping for a planned out of hospital. However, unexpectedly prolonged hospitalization may occur. In this study, we used deep learning to predict the likelihood of prolonged hospitalization using MRI images taken before or early in the hospitalization process. As a result, we were able to predict the likelihood of prolonged hospitalization with a probability of over 80%. This result shows the possibility of identifying unexpectedly prolonged hospitalization in the early stages of hospitalization.

Free Research Field

医療情報

Academic Significance and Societal Importance of the Research Achievements

検査画像は、病変の情報のみならず、癌の転移の可能性や治療の予後予測の情報を多く持つことがわかってきています。検査画像を用いて、入院期間の予測など病院指標に関わるものを予測した研究はされておらず、本研究結果によって、MRI画像を用いて、入院が長期になるかどうか知ることが出来る可能性が示唆されました。入院が長期になる可能性があるとわかれば、効率的に予防策をとることができ、結果的には医療費抑制に貢献することが出来ます。さらには、検査画像を画像診断の領域だけではなく、他の分野に利用することは、画像情報の利用価値が拡大していくことが期待できます。

URL: 

Published: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi