2021 Fiscal Year Final Research Report
Dimensional reduction method with interpretable estimated values
Project/Area Number |
19K20226
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 60030:Statistical science-related
|
Research Institution | Doshisha University (2021) Tokyo University of Science (2019-2020) |
Principal Investigator |
Tsuchida Jun 同志社大学, 文化情報学部, 助教 (40828365)
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Keywords | 主成分分析 / 因子分析 / 因子回転法 / 交互最小2乗法 |
Outline of Final Research Achievements |
In this study, we used the Gini Index to measure the interpretability of estimated values. We developed dimensional reduction methods with the constraint that the Gini Index must be above a particular value. From this constraint, we could obtain the sparse estimated values with a large variance. This characteristic of the estimated values corresponds to the interpretability. We have developed two methods: One is principal component analysis with the constraint that the Gini Index must be above a certain level. The other is a rotation method for factor analysis. We reported the study results to the public through conference presentations.
|
Free Research Field |
統計科学
|
Academic Significance and Societal Importance of the Research Achievements |
“解釈容易性”の議論は実用上重要であるが,現在,積極的に議論されていない.本研究では,Thurston(1947) が言葉でのみ定義した解釈容易性を,式によって表現することを目標とした.解釈容易性を式によって表現することで,実用上重要な問題である“解釈容易性”を担保した新しい統計手法の構築の基礎を作ることができる.本研究ではGini Index を用いて解釈容易性が定義できるかを検証し,解釈容易性を最大化する次元縮約法を開発した.本研究の成果は,新しい統計手法の構築の基礎の一助となる.
|