• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Final Research Report

Neural Machine Translation Based on Bilingual Resources Extracted from Multimodal Data

Research Project

  • PDF
Project/Area Number 19K20343
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 61030:Intelligent informatics-related
Research InstitutionKyoto University (2020-2021)
Osaka University (2019)

Principal Investigator

Chu Chenhui  京都大学, 情報学研究科, 特定准教授 (70784891)

Project Period (FY) 2019-04-01 – 2022-03-31
Keywords機械翻訳 / マルチモーダル
Outline of Final Research Achievements

In this project, we mainly studied the following topics for multimodal neural machine translation (NNMT). 1). MNMT with comparable sentences. We constructed an MNMT with comparable sentences dataset and organized a shared task in the 8th Workshop on Asian Translation (WAT 2021). Our system achieved the best performance in this shared task. 2). MNMT with semantic image regions and word-region alignment. We studied MNMT with semantic image regions and word-region alignment and published them in two famous international journals Neurocomputing and TASLP. 3). Video-guided MT (VMT). We proposed VMT with a spatial hierarchical attention network, which can address both verb and noun sense disambiguation.

Free Research Field

自然言語処理

Academic Significance and Societal Importance of the Research Achievements

機械翻訳における自然言語の意味曖昧性解消を目的として、マルチモーダルニューラル機械翻訳(MNMT)が主に研究されている。本プロジェクトでは、低資源な設定でコンパラブル文を用いたMNMTという新しい仕組みを考案し、画像を用いたMNMTにおいてはセマンティック画像領域と単語領域アライメントを用いたMNMTを提案し、映像を用いたMNMTにおいては空間階層注意ネットワークを提案し、機械翻訳における視覚情報の利用の有効性を示した。開発したMNMTシステムは映画、ドラマ、アニメやニュースなどの字幕の自動翻訳の精度向上に貢献できるし、大阪万博などの国際的イベントでの自動翻訳ニューズにも応えられる。

URL: 

Published: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi