2020 Fiscal Year Final Research Report
A Study of Parallel Evolutionary Algorithm Independent to Evaluation Time Variances
Project/Area Number |
19K20362
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 61040:Soft computing-related
|
Research Institution | Tokyo Metropolitan University |
Principal Investigator |
Harada Tomohiro 東京都立大学, システムデザイン研究科, 助教 (40755518)
|
Project Period (FY) |
2019-04-01 – 2021-03-31
|
Keywords | 進化計算 / 並列計算 / 最適化 |
Outline of Final Research Achievements |
This research proposes an efficient parallelization method for evolutionary algorithms (PEA), which are typical methods for solving optimization problems. Conventional PEA has a problem of not obtaining the optimal solution in a short computation time when the evaluation time of solutions differs and is biased. To address this problem, this research has proposed the following three PEA approaches; (1) semi-asynchronous PEA that can arbitrarily set the asynchrony of parallelization during optimization, (2) asynchronous PEA that introduces a selection mechanism considering the search progress of solutions, and (3) synchronous PEA that improves the computer utilization rate by the precedence evaluation.
|
Free Research Field |
知能情報学
|
Academic Significance and Societal Importance of the Research Achievements |
本研究は,代表的な最適化手法である進化的アルゴリズム(EA)の計算時間削減のための効果的な並列化手法を確立した.実世界の多くの最適化問題では,解候補の評価にシミュレーションや複雑な数値計算が必要になるなど,莫大な計算時間が必要になり,かつそれぞれの解候補の評価時間は不均一である.これに対し,本研究の研究成果によって,EAの最適化性能を低下させることなく,最適化問題に要する計算時間を大幅に削減でき,製品開発やサービス提供のプロセスを大きく加速できる.
|