2022 Fiscal Year Final Research Report
Developing data-driven mathematical models and quantitative manipulation methods for facial impressions
Project/Area Number |
19K20387
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 61060:Kansei informatics-related
|
Research Institution | Waseda University |
Principal Investigator |
Nakamura Koyo 早稲田大学, 理工学術院総合研究所(理工学研究所), その他(招聘研究員) (20817275)
|
Project Period (FY) |
2019-04-01 – 2023-03-31
|
Keywords | 顔 / 印象 / 感性情報学 / 社会的認知 / 数理モデル |
Outline of Final Research Achievements |
This research aims to develop data-driven computational models of facial impressions, which play a crucial role in the early stages of interpersonal communication. In this study, a series of empirical studies were conducted to mathematically model the associations between facial features and perceived impressions. More specifically, I developed a method to identify facial features associated with specific impressions such as attractiveness and dominance, and generated facial images that exaggerated these impressions through statistical image analysis. Furthermore, this research revealed the existence of both universality and individual differences in the perception of facial impressions. Building upon these findings, I devised a method to quantify the extent of individual variations in the perception of facial impressions.
|
Free Research Field |
感性情報学
|
Academic Significance and Societal Importance of the Research Achievements |
顔印象は対人相互作用のさまざまな場面で、ヒトの行動と認知に影響を及ぼすことが分かっている。近年、顔や容姿の印象について人々の価値観や社会の意識が大きく変化しており、顔に対して無自覚のうちに陥るバイアスやステレオタイプ的な認知を制御するための研究への社会的要請が高まっている。本研究では、ヒトのコミュニケーションの最も身近にある「顔」とその印象に焦点を当てた学術研究により、顔印象の知覚特性の重要な側面を複数明らかにすることができた。これらの基礎的知見は、今後の学術研究の基盤となるだけでなく、実社会におけるヒトの対人行動の理解においても有益な知見であると考えている。
|