2020 Fiscal Year Final Research Report
Elucidation of Si:P spin dynamics in the ultra-low temperature and high-frequency region using the double mangetic resonance
Project/Area Number |
19K21036
|
Project/Area Number (Other) |
18H05847 (2018)
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Multi-year Fund (2019) Single-year Grants (2018) |
Review Section |
0202:Condensed matter physics, plasma science, nuclear engineering, earth resources engineering, energy engineering, and related fields
|
Research Institution | University of Fukui |
Principal Investigator |
Ishikawa Yuya 福井大学, 遠赤外領域開発研究センター, 助教 (80825282)
|
Project Period (FY) |
2018-08-24 – 2021-03-31
|
Keywords | 二重磁気共鳴 / ESR / NMR / DNP / 超低温 / 高周波 / meanderline |
Outline of Final Research Achievements |
An important issue for the practical application of diluted-doped semiconductors (Si:P), which is a candidate for solid-state quantum computer (QC) devices, is the acquisition of information on the spin dynamics of 31P nuclei, which are treated as qubits. It is necessary to know the magnetic behavior of the 31P nucleus for operations such as initialization, but since the 31P nucleus is thin, there is no direct observation example by nuclear magnetic resonance (NMR) and it is unclear. Aiming at elucidation of magnetic characteristics by direct observation by NMR, we have developed an ultra-low temperature ESR / NMR dual magnetic resonance resonator. Using the developed resonator for dual magnetic resonance, we succeeded for the first time in the world in direct observation of 31P nuclei by NMR in the region of 220 mK / 130 GHz where Si: P functions as QC.
|
Free Research Field |
超低温物性物理学
|
Academic Significance and Societal Importance of the Research Achievements |
Kaneが提唱したQCモデルSi:Pは、量子ビットの長いコヒーレンス時間と量子ビット数の拡張性を共に備えていることから有望視されている。Si:PはSi中に希薄にドープした31P核スピンを量子ビットとしドープ量によりビット数の制御が可能である。初期化等の演算には超低温(T≦0.3K)・高磁場(B>3T)領域下において31P核スピンをESR及びNMRにより制御する。本研究では上記領域下ににてESR/NMR二重磁気共鳴により31P核スピンを約83%偏極させることに成功し、31P核スピンの直接観測に世界で初めて成功した。本研究は固体QCの基礎研究としてSi:Pのスピン制御の実現性について明らかにした。
|