2019 Fiscal Year Final Research Report
Risk prediction model for chronic kidney disease using regularized regression methods
Project/Area Number |
19K21461
|
Project/Area Number (Other) |
18H06380 (2018)
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Multi-year Fund (2019) Single-year Grants (2018) |
Review Section |
0908:Society medicine, nursing, and related fields
|
Research Institution | Fujita Health University |
Principal Investigator |
FUJII Ryosuke 藤田医科大学, 医療科学部, 助教 (60823846)
|
Project Period (FY) |
2018-08-24 – 2020-03-31
|
Keywords | ゲノム疫学 / 機械学習 / 正則化回帰モデル / 慢性腎臓病 / 遺伝的多型 |
Outline of Final Research Achievements |
There has been attracted much interest in the prediction using combined information of individual's genetic variants with laboratory testing value and lifestyle habit. In this study, we developed a predictive model for chronic kidney disease (CKD) using regularized regression models based on genetic information and basic characteristics (age, gender) in a Japanese population (about 14,000 healthy people). Comparing the performance of regularized regression models with that of a conventional analysis method (linear regression model), the Lasso regression and the elastic net may construct a high-performance model with fewer variables and fewer errors. However, the improvement in performance is slight and further studies need to be included more genetic variants.
|
Free Research Field |
疫学
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では、慢性腎臓病(CKD)をアウトカムとして予測モデルの構築に取り組んだが、他の人種もしくは疾患にも応用可能であり、個人のゲノム情報を使用したリスク予測モデル構築において、大きな可能性を秘めている研究と考えている。また、CKDを経て末期腎不全を発症すると人工透析を要することから、縦断的な検討をさらに実施することで、個人のQOLや社会生産性の向上に貢献しうると考えている。
|