2019 Fiscal Year Final Research Report
A study on shared representation learning considering the uncertainty of each modality
Project/Area Number |
19K21527
|
Project/Area Number (Other) |
18H06458 (2018)
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Multi-year Fund (2019) Single-year Grants (2018) |
Review Section |
1001:Information science, computer engineering, and related fields
|
Research Institution | The University of Tokyo |
Principal Investigator |
Suzuki Masahiro 東京大学, 大学院工学系研究科(工学部), 特任研究員 (30823885)
|
Project Period (FY) |
2018-08-24 – 2020-03-31
|
Keywords | 深層学習 / 共有表現学習 / マルチモーダル学習 / 深層生成モデル |
Outline of Final Research Achievements |
In this research, we addressed how to integrate several different types of information (i.e., different modalities), such as images, documents, and sounds. Previous studies did not take into account the differences in uncertainty across modalities and therefore integrated them deterministically. In this study, we proposed the probabilistic integration of different modalities based on a framework called deep generative models. We then showed that this approach is effective in multiple multimodal learning problem settings. In addition, we developed a new library to simplify the implementation of complex deep generative models containing multimodal information relationships.
|
Free Research Field |
人工知能
|
Academic Significance and Societal Importance of the Research Achievements |
本研究で提案する異なるモダリティの統合の枠組みは,今回扱ったデータや問題設定によらず,様々な領域に応用できると考えている.それは,この統合方法では深層生成モデルを用いてるため,モダリティの不確実性の違いのみに着目しており,モダリティの入力空間の次元数には依存しないからである.また,今回開発した深層生成モデルライブラリは,マルチモーダル学習のモデルに限らず,様々な深層生成モデルの実装に利用することができる.
|