2020 Fiscal Year Final Research Report
Realization of Superfluidity in Adsorbed Molecular Films by Phonon Irradiation
Project/Area Number |
19K21856
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 13:Condensed matter physics and related fields
|
Research Institution | Keio University |
Principal Investigator |
Shirahama Keiya 慶應義塾大学, 理工学部(矢上), 教授 (70251486)
|
Co-Investigator(Kenkyū-buntansha) |
石黒 亮輔 日本女子大学, 理学部, 准教授 (40433312)
永合 祐輔 慶應義塾大学, 理工学部(矢上), 助教 (50623435)
|
Project Period (FY) |
2019-06-28 – 2021-03-31
|
Keywords | 物性物理 / 量子流体固体 / 超流動 / 低温物性 / フォノン / 非平衡 / 水素 / ヘリウム |
Outline of Final Research Achievements |
We aim to realize non-equilibrium superfluid states by irradiating phonons on adsorbed thin films of various atoms and molecules. Such novel superfluid states will contribute to the development of physics. Ultrahigh-frequency phonons of about 100 GHz are generated on the solid substrate on which a monoatomic layer of molecules is adsorbed, so that the molecules undergo transitions from a localized state to a spatially extended excited state. A superconducting tunnel junction is used for phonon generation. We fabricated a Nb-AlOx-Nb superconducting tunnel junction device, investigated its current-voltage characteristics to improve the device, and tried to generate and detect phonons by bonding the two junctions. We have obtained signals that suggest phonon generation, but have not yet been able to identify them completely due to measurement problems. In the future, we will improve the apparatus and try to realize a non-equilibrium superfluid state in molecular films such as hydrogen.
|
Free Research Field |
低温物理学
|
Academic Significance and Societal Importance of the Research Achievements |
超伝導は発見から1世紀を経てもなお量子技術への応用等で物理学の最先端で研究されている。超流動は超伝導と酷似した現象で、同じ物理的機構で生じるが超流動を示す物質は非常に少ない。また、光で非平衡超伝導を誘起する研究が、新奇超伝導状態を得る手法として注目されている。本研究は、本来超流動を示さない物質に外場を与えることで非平衡超流動を実現する野心的な試みであり、超流動が実現した場合その学術的価値は極めて高い。特にトポロジカル超流動などの新奇な超流動の発現が期待され、新しい物理概念の発展に貢献すると期待される。また水素等の分子薄膜の吸蔵・輸送特性の解明にも役立ち、燃料貯蔵などの工学応用も期待できる。
|