• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Reproduction of geo-electro-bio-chemical interactions in extreme environments: Development of hydrothermal electrochemical reactors with nested structure

Research Project

  • PDF
Project/Area Number 19K21906
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Review Section Medium-sized Section 17:Earth and planetary science and related fields
Research InstitutionJapan Agency for Marine-Earth Science and Technology

Principal Investigator

Yamamoto Masahiro  国立研究開発法人海洋研究開発機構, 超先鋭研究開発部門(超先鋭研究開発プログラム), 研究員 (60435849)

Co-Investigator(Kenkyū-buntansha) 鹿島 裕之  国立研究開発法人海洋研究開発機構, 超先鋭研究開発部門(超先鋭研究プログラム), 研究員 (70780914)
Project Period (FY) 2019-06-28 – 2023-03-31
Keywords電気化学 / 生命の起源 / 極限環境
Outline of Final Research Achievements

We developed an electrochemical reactor which has nested structure. A H-type glass electrochemical cell including reaction mixture was enclosed in an aluminum pressure-resistant container. The container was filled with distilled water using a pump to provide the high pressure conditions. Risk of liquid leakage was low due to the robust structure of the container. High temperature conditions were provided by putting the container in an incubator. In this project, we demonstrated that electrochemical experiments can be performed under conditions up to 180 degree Celsius and 10 MPa. We observed the electro deposition process of silica in the high temperature and high pressure conditions. In the future, it is expected to be possible to cope with even higher temperature conditions, by replacing resin parts with metal or ceramic parts.

Free Research Field

微生物生化学

Academic Significance and Societal Importance of the Research Achievements

高温高圧電気化学反応は工業分野でのニーズが高いのみならず、自然界でも発生している現象であることが近年明らかになってきているため、基礎科学の分野でも注目されている。例えば、生命の起源の研究においても電気化学反応の重要性が指摘されており、特に高温高圧条件での電気化学反応試験を行える装置は各種再現実験のために非常に有用である。電気化学を高温高圧で制御するためには液漏れを抑えるために反応槽の構造を単純化しなければいけないという制約があったが、本課題で開発した二重構造式の反応槽を用いることで、この制約を克服した。今後様々な電気化学反応に応用できると期待される。

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi