• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Final Research Report

An analytic method for the intracellular domain of cell membranes by microfluidic disruption

Research Project

  • PDF
Project/Area Number 19K22079
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Review Section Medium-sized Section 27:Chemical engineering and related fields
Research InstitutionThe University of Tokyo

Principal Investigator

Yamaguchi Satoshi  東京大学, 先端科学技術研究センター, 准教授 (80398106)

Project Period (FY) 2019-06-28 – 2022-03-31
Keywords膜タンパク質 / 1細胞解析 / 細胞膜 / 細胞内小器官 / 光応答性材料 / 細胞固定化剤 / 分子イメージング
Outline of Final Research Achievements

We have developed a technique for high-throughput single-cell analysis of membrane proteins both on the inside of cell membranes and on the surface of intracellular organelles using microfluidic channels modified with a photo-responsive cell immobilization reagent. First, single-cell arrays were constructed at the bottom of the channels by irradiating light patterns onto the surface. The immobilized cells were disrupted by high-speed pumping in the channel, achieving efficient construction of arrays of the bottom cell membrane (cell membrane sheet). Electron microscopic observation revealed various vesicles and cytoskeletal fibers on these sheets. In addition, phosphorylation of intracellular domains of receptors involved in cell motility could be detected on the sheets. By narrowing the cell intervals, we found that only the cell parietal can be selectively disrupted, leading to cell disruption with remaining intracellular organelles intact.

Free Research Field

バイオプロセス工学

Academic Significance and Societal Importance of the Research Achievements

細胞膜の内側や細胞内小器官表面に存在する膜タンパク質は、様々な生命現象や疾患に関わる。しかし、細胞膜透過性の無い抗体などの解析ツールや薬剤ライブラリを生きたままの状態で作用させられなかった。また、膜タンパク質への修飾や結合を1細胞レベルで解析出来なかった。本研究成果により、直前まで生きていた細胞の細胞膜の裏側や細胞内小器官表面に対し、界面活性剤や有機溶媒などで膜構造を壊すことなく、分子を作用させられるようになった。今後は、この革新的な技術によって標的膜タンパク質の修飾や局在、結合分子を可視化・同定することで、関連する分子システムの解明に貢献し、創薬標的の探索にも有効であると期待される。

URL: 

Published: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi