2023 Fiscal Year Research-status Report
人工衛星データと深層学習を用いた福島原発事故に係る環境評価
Project/Area Number |
19K22929
|
Research Institution | Kyoto University |
Principal Investigator |
大庭 ゆりか 京都大学, 情報学研究科, 研究員 (30816921)
|
Co-Investigator(Kenkyū-buntansha) |
伊勢 武史 京都大学, フィールド科学教育研究センター, 准教授 (00518318)
|
Project Period (FY) |
2019-06-28 – 2025-03-31
|
Keywords | 深層学習 / 放射線災害 / リモートセンシング / 森林生態系 / 環境保全 |
Outline of Annual Research Achievements |
今年度は、昨年度に再整備した低解像度の無償人工衛星データから構成される教師画像データベースの再点検を実施し、更新・変更が必要なデータの探索および抽出を行い、データベースを更新した。これに伴って、更新後の教師画像データベースを用いて構築する画像識別モデルをベースとした高解像度の有償人工衛星画像データへの適用が可能なモデル開発のための準備を行い、さらに高解像度人工衛星画像データを解析するために必要な環境構築やデータ処理プロトコルの開発を進めた。また、公開されている除染実施区域についての追加の情報収集を行い、その情報をもとに新たなフィールド調査のサイト選定や現地で取得するデータのリストアップおよび作業内容の検討等、フィールド調査の準備を行った。
|
Current Status of Research Progress |
Current Status of Research Progress
3: Progress in research has been slightly delayed.
Reason
新型コロナウイルス感染症流行のため、予定していたフィールド調査を延期せざるを得なかったため。
|
Strategy for Future Research Activity |
2024年度は、2023年度に予定していたフィールド調査を実施する。併せて高精細な有償の人工衛星画像データを取得して、それらのデータに除染区域自動識別モデルを適用し、モデル精度の検証を行う。検証結果に応じて、必要なモデルの再構築を行い、モデル精度の向上を目指す。さらに、モデルを使用して抽出した地域の森林データの解析を行い、森林生態系への除染の影響を評価する。
|
Causes of Carryover |
2023年度は、新型コロナウイルスの感染状況を考慮して調査計画を延期したため、フィールド調査やその結果をもとに行う予定であった有償の人工衛星画像データの取得が困難であった。2024年度は、延期していたフィールド調査を実施し、併せて有償の人工衛星画像データを取得する。
|