2022 Fiscal Year Research-status Report
ドープされたモット絶縁体における擬ギャップ現象の研究
Project/Area Number |
19K23433
|
Research Institution | Institute of Physical and Chemical Research |
Principal Investigator |
関 和弘 国立研究開発法人理化学研究所, 量子コンピュータ研究センター, 研究員 (40708533)
|
Project Period (FY) |
2019-08-30 – 2024-03-31
|
Keywords | 強相関電子系 / 量子多体系 |
Outline of Annual Research Achievements |
本研究では量子多体問題であるドープされたMott絶縁体の基底状態や有限温度における一粒子励起を調べることを目的とした。将来的にこのような量子多体問題 の難問を解く潜在能力を期待して、量子計算の量子多体問題への応用を模索していたところ、予期してたよりも量子計算が興味深いことを認識し、この方向への研究をさらに進めた。その結果、いくつかの研究を論文として報告した。具体的には、強相関電子系の典型的な模型であるHubbard模型について、その基底状態を量子計算機で準備するための方法の一つである変分counterdiabatic駆動法を応用し、基底状態に関するフィデリティを指標として、基底状態を得るために要する駆動ハミルトニアンの展開の次数や、駆動に要する時間を取りまとめて、論文として発表とした。技術的な面では、変分counterdiabatic駆動法で用いる変分パラメタが、ハミルトニアンの項の入れ子状の交換子のフロベニウスノルムを係数行列とした線型方程式の解として表現できることを示した。 また、量子多体系の統計力学的扱いを可能にする量子古典ハイブリッド計算法の提案も行った。本提案手法はミクロカノニカル集団を念頭においた計算手法であるが、温度はエントロピーのエネルギーに関する微分で与えられるため、量子多体系の有限温度の性質を議論することもできる。また原理的にはラプラス変換によりミクロカノニカルの状態密度からカノニカルの分配関数を計算できるので、その意味でも量子多体系の有限温度の性質を議論するための量子古典ハイブリッド計算手法と見ることもできる。
|
Current Status of Research Progress |
Current Status of Research Progress
2: Research has progressed on the whole more than it was originally planned.
Reason
量子多体系の基底状態や有限温度のための量子計算手法を提案し、論文にまとめることができたから。
|
Strategy for Future Research Activity |
動的相関関数のような、量子多体系の励起状態の性質を調べる量子計算手法の利用または開発を行いたい。
|
Causes of Carryover |
コロナウイルス感染症拡大防止の方針に倣い出張で使用する予定だった旅費を使用しなかったため。次年度は情報収集と成果発表を目的とした出張を行い、その ための旅費を次年度使用額の主な使い道にすることを計画している。
|