2020 Fiscal Year Final Research Report
Development of turbulent heat transfer evaluation method and elucidation of its mechanism using a MEMS sensor
Project/Area Number |
19K23492
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Multi-year Fund |
Review Section |
0301:Mechanics of materials, production engineering, design engineering, fluid engineering, thermal engineering, mechanical dynamics, robotics, aerospace engineering, marine and maritime engineering, and related fields
|
Research Institution | The University of Shiga Prefecture |
Principal Investigator |
|
Project Period (FY) |
2019-08-30 – 2021-03-31
|
Keywords | 熱流束測定 / 乱流熱伝達 / 相関解析 / MEMS |
Outline of Final Research Achievements |
To clarify turbulent heat transfer mechanisms, thin-film temperature sensors with a size of sub-millimeter were fabricated using MEMS (Micro-Electro-Mechanical Systems) technologies, and high-resolution wall temperature and heat flux measurements were performed. Additionally, advection velocity of a fluid body near the wall was estimated from the phase delay in the wall temperature or heat flux obtained at the adjacent points, which aims to detect the heat transfer and flow simultaneously. To verify the physical meaning of the advection velocity estimated from the wall temperature or heat flux, PIV (Particle Image Velocimetry) was performed in a flow channel under the same condition as the wall temperature measurement. As a result, it was confirmed that the advection velocity corresponded with the wall parallel velocity at the height of which corresponded to the thermal boundary layer thickness.
|
Free Research Field |
熱工学
|
Academic Significance and Societal Importance of the Research Achievements |
熱流体機器において壁面での熱伝達は重要な問題であり,特に燃焼を伴う場合には熱効率や壁面部材へのダメージだけでなく,燃焼効率や排気成分にも影響を与える.熱伝達特性を調べるためには熱輸送量の測定だけでなく,流動計測を行い,両者を比較検証することが求められるが,稼働中の機械で熱と流動を同時に捉えることは難しい.一方で,本研究で開発した技術では壁面温度・熱流束から移流速度を推定するため,熱と流動を同時に捉え,両者の関係性を探ることができる点で有用といえる.
|