• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2020 Fiscal Year Final Research Report

Data-driven model reduction of nonlinear complex systems

Research Project

  • PDF
Project/Area Number 19K23517
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeMulti-year Fund
Review Section 0302:Electrical and electronic engineering and related fields
Research InstitutionHiroshima University

Principal Investigator

Kawano Yu  広島大学, 先進理工系科学研究科(工), 准教授 (40743034)

Project Period (FY) 2019-08-30 – 2021-03-31
Keywordsモデル低次元化 / 非線形システム / 大規模システム / 単調システム / DCゲイン / グラミアン
Outline of Final Research Achievements

To extract essential components for analysis or control design from nonlinear large-scale systems, we have developed model reduction methods by data assimilation approaches, where data assimilation is a methodology for improving accuracy of estimating system behavior by integrating a system model and its historical data. In particular, we have constructed two model reduction method; one is for monotone network systems, and the other is to reduce computational complexity of model predictive control. The proposed methods are illustrated by gene regulatory networks and limit cycles.

Free Research Field

制御工学

Academic Significance and Societal Importance of the Research Achievements

IoT技術の躍進によるシステムの大規模ネットワーク化,要素技術の発展によるシステムモデルの精密化(非線形化)により,大規模非線形ネットワークとして幅広いシステムがモデル化される.記述能力が高いモデルであるものの,その複雑さから解析・制御系設計が難しいことが多い.本研究の成果は,このような問題を解決するための手助けになることが期待される.

URL: 

Published: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi