2010 Fiscal Year Final Research Report
Spin relaxation time in low dimensional nanostructures and its application to spintronic devices
Project/Area Number |
20360002
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Applied materials science/Crystal engineering
|
Research Institution | National Institute for Materials Science |
Principal Investigator |
MITANI Seiji National Institute for Materials Science, 磁性材料センター, グループリーダー (20250813)
|
Co-Investigator(Kenkyū-buntansha) |
SAKURABA Yuya 東北大学, 金属材料研究所, 助教 (10451618)
MIZUGUCHI Masaki 東北大学, 金属材料研究所, 助教 (50397759)
|
Co-Investigator(Renkei-kenkyūsha) |
NIIZEKI Tomohiko 独立行政法人物質・材料研究機構, 磁性材料センター, NIMSポスドク研究員 (40567749)
|
Project Period (FY) |
2008 – 2010
|
Keywords | 磁性 / スピントロニクス / ナノ構造 / ナノ粒子 / 低次元 / 超構造 / 2重接合 |
Research Abstract |
The understanding of spin relaxation of conduction electrons is of particular interest for the development of spintronic devices. In this study, we investigated spin relaxation in low dimensional systems such as nanoparticles and ultrathin films by spin dependent transport measurements. While enhancement of spin relaxation time was observed in nanoparticles, such behavior was not obtained in ultrathin films. The difference possibly comes from the fact that electronic states in ultrathin films are not quantized in the in-plane directions. Simple model calculations were also performed for double-barrier magnetic tunnel junctions with enhanced spin relaxation time.
|
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
[Presentation] Mechanism of giant tunnel magnetoresistance in fullerene-cobalt granular thin films2008
Author(s)
Sugai, S.Sakai, S. Mitani, M.Mizuguchi, K.Takanashi, Y.Matsumoto, H.Naramoto, P.V.Avramov, S.Okayasu, Y.Maeda
Organizer
53rd Annual Conference on Magnetism and Magnetic Materials
Place of Presentation
Austin, USA
Year and Date
2008-11-11
-
-
-