2010 Fiscal Year Final Research Report
Classification of quasi-periodic structure with local configurations of Archimedes tiling
Project/Area Number |
20540119
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
General mathematics (including Probability theory/Statistical mathematics)
|
Research Institution | Kochi University |
Principal Investigator |
KOMATSU Kazushi Kochi University, 教育研究部・自然科学系, 准教授 (00253336)
|
Co-Investigator(Kenkyū-buntansha) |
AKIYAMA Shigeki 新潟大学, 自然科学系, 准教授 (60212445)
GOTO Satoru 国際医療福祉大学, 薬学部, 准教授 (50253232)
KATO Kazuhisa 高知大学, 教育研究部自然科学系, 教授 (20036578)
NOMAKUCHI Kentaro 高知大学, 教育研究部自然科学系, 教授 (60124806)
|
Co-Investigator(Renkei-kenkyūsha) |
NAKANO Fumihiko 学習院大学, 理学部, 教授 (10291246)
|
Project Period (FY) |
2008 – 2010
|
Keywords | 準周期タイリング / 数理モデル / 配置空間 / 非周期 |
Research Abstract |
We study details of local configurations around vertices of non-periodic tilings. We can construct an uncountable family of non-periodic tilings with 7-fold rotational symmetry which have just three kinds of local configurations around vertices in Archimedean tilings. These non-periodic tilings have singular local configurations around vertices. The Danzer tiling with 7-fold rotational symmetry has a singular local configurations around vertices. This implies that the Danzer tiling with 7-fold rotational symmetry cannot be obtained as a limit of sequence of canonical tilings.
|
Research Products
(14 results)
-
-
-
-
-
-
-
-
-
-
[Presentation] 射影法入門I2008
Author(s)
小松和志
Organizer
射影法から見た準周期構造と関連する話題
Place of Presentation
京都大学数理解析研究所
Year and Date
2008-10-01
-
-
-
-