• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2010 Fiscal Year Annual Research Report

ネットワークの信頼性向上のためのアルゴリズム設計とその応用に関する研究

Research Project

Project/Area Number 20700002
Research InstitutionOtaru University of Commerce

Principal Investigator

石井 利昌  小樽商科大学, 商学部, 准教授 (30324487)

Keywords組合せ最適化 / アルゴリズム / ネットワーク設計 / グラフ理論 / グラフ連結度 / 距離制約付きラベリング
Research Abstract

本研究では,主に高信頼性を有するネットワーク設計問題を対象に,効率的なアルゴリズムの構築という立場から研究を推し進め,さらに離散最適化問題としての一般化を図ることを目的とする.本年度得られた主な結果は以下の通りである.
1.無向グラフG=(V,E),点集合族W={W_1,W_2,…,Wp},非負整数kが与えられたとき,Gに最小本数の辺を加えることで,各節点v∈Vと各W∈wの間に辺を共有しないパスがk本以上存在するように増大する問題に対し,これまで計算の複雑さが未解決であったk≧3の場合が多項式時間で解けることを示した.
2.グラフGの(p,q)の-全ラベリングとは,Gの点と辺への0からkまでの整数値の割り当てであり,点とそれに接続する辺の間ではp以上,隣り合う2点間または2辺間ではq以上の差があるもののことをいう.Gが与えられたとき,kが最小である(p,q)-全ラベリングを求める問題を(p,q)-全ラベリング問題という.この問題は,無線通信ネットワーク設計に応用がある.この問題に対し,つぎの(i)(ii)の結果を得た.
(i)Gが外平面的グラフ,p=2,q=1の場合,kのタイトな上界を示した.これは,2007年に提示されたD.ChenとW.Wangの予想を肯定的に示したものである.
(ii)Gが木かつq≦p≦3q/2の場合,問題が多項式時間で解けることをはじめて示した.これは,この問題の一つの拡張であるL(p,q)-ラベリング問題がqがpの約数でない全ての(p,q)に対しNP困難であることと対照的である.また,提案アルゴリズムの計算時間は線形時間である.そのほか,全ての(p,q)に対し,kのタイトな上界と下界を示した.

  • Research Products

    (9 results)

All 2010 Other

All Journal Article (4 results) (of which Peer Reviewed: 4 results) Presentation (2 results) Book (2 results) Remarks (1 results)

  • [Journal Article] Minimum augmentation of edge-connectivity between vertices and sets of vertices in undirected graphs2010

    • Author(s)
      Toshimasa Ishii
    • Journal Title

      Algorithmica

      Volume: 56 Pages: 413-436

    • Peer Reviewed
  • [Journal Article] Posi-modular systems with modulotone requirements under permutation constraints2010

    • Author(s)
      Toshimasa Ishii
    • Journal Title

      Discrete Mathematics, Algorithms and Applications

      Volume: 2 Pages: 61-76

    • Peer Reviewed
  • [Journal Article] The (2,1)-total labeling number of outerplanar graphs is at most Δ+22010

    • Author(s)
      Toru Hasunuma
    • Journal Title

      Proceedings of the 21th International Workshop on Combinatorial Algorithms

      Pages: 103-106

    • Peer Reviewed
  • [Journal Article] The (p,q)-total labeling problem for trees2010

    • Author(s)
      Toru Hasunuma
    • Journal Title

      Proceedings of the 21th International Symposium on Algorithms and Computation

      Pages: 49-60

    • Peer Reviewed
  • [Presentation] The (p,q)-total labeling problem for trees2010

    • Author(s)
      Toshimasa Ishii
    • Organizer
      情報処理学会アルゴリズム研究会
    • Place of Presentation
      関西大学
    • Year and Date
      2010-11-19
  • [Presentation] A tight upper bound on the (2,1)-total labeling number of outerplanar graphs2010

    • Author(s)
      Toshimasa Ishii
    • Organizer
      電子情報通信学会コンピュテーション研究会
    • Place of Presentation
      立命館大学
    • Year and Date
      2010-04-22
  • [Book] グラフ理論-連結構造とその応用-2010

    • Author(s)
      茨木俊秀
    • Total Pages
      76-157, 225-237
    • Publisher
      朝倉書店
  • [Book] 離散数学のすすめ2010

    • Author(s)
      伊藤大雄
    • Total Pages
      182-196
    • Publisher
      現代数学社
  • [Remarks]

    • URL

      http://www.otaru-uc.ac.jp/~ishii/

URL: 

Published: 2012-07-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi