• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2011 Fiscal Year Final Research Report

transversal study of machine learning and optimization

Research Project

  • PDF
Project/Area Number 20700251
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeSingle-year Grants
Research Field Statistical science
Research InstitutionNagoya University

Principal Investigator

KANAMORI Takafumi  名古屋大学, 情報科学研究科, 准教授 (60334546)

Project Period (FY) 2008 – 2011
Keywords統計的学習理論
Research Abstract

My target of this study is to provide a transversal study of machine learning and optimization theory. We apply machine learning techniques to optimization problems with noisy data. Inversely, highly developed optimization algorithms are available to conduct statistical analysis of real-world high-dimensional data. Unifying machine learning and optimization is promising for the advanced information processing.

  • Research Products

    (16 results)

All 2012 2011 2010 2009 2008

All Journal Article (9 results) (of which Peer Reviewed: 9 results) Presentation (5 results) Book (2 results)

  • [Journal Article] Worst-Case Violation of Sampled Convex Programs for Optimization with Uncertainty2012

    • Author(s)
      T. Kanamori, A. Takeda
    • Journal Title

      Journal of Optimization Theory and Applications

      Volume: vol.152, Issue 1 Pages: 171-197

    • Peer Reviewed
  • [Journal Article] F-divergence estimation and two-sample homogeneity test under semiparametric density-ratio models2012

    • Author(s)
      T. Kanamori, T. Suzuki, M. Sugiyama
    • Journal Title

      IEEE Transactions on Information Theory

      Volume: Vol.58, Issue 2 Pages: 708-720

    • Peer Reviewed
  • [Journal Article] Statistical analysis of kernel-based least-squares density-ratio estimation2012

    • Author(s)
      T. Kanamori, T. Suzuki, M. Sugiyama
    • Journal Title

      Machine Learning

      Volume: vol.86, Issue 3 Pages: 335-367

    • Peer Reviewed
  • [Journal Article] Multiscale Bagging and its Applications2011

    • Author(s)
      H. Shimodaira, T. Kanamori, M. Aoki, K. Mine
    • Journal Title

      IEICE Transactions on Information and Systems

      Volume: Volume E94-D No.10 Pages: 1924-1932

    • Peer Reviewed
  • [Journal Article] Deformation of Log-Likelihood Loss Function for Multiclass Boosting2010

    • Author(s)
      T. Kanamori
    • Journal Title

      Neural Networks

      Volume: vol.23 Pages: 843-864

    • Peer Reviewed
  • [Journal Article] Theoretical Analysis of Density Ratio Estimation2010

    • Author(s)
      T. Kanamori, T. Suzuki, M. Sugiyama
    • Journal Title

      Communications and Computer Sciences

      Volume: vol.E93-A, no.4 Pages: 787-798

    • Peer Reviewed
  • [Journal Article] A Least-squares Approach to Direct Importance Estimation2009

    • Author(s)
      T. Kanamori, S. Hido, M. Sugiyama
    • Journal Title

      Journal of Machine Learning Research

      Volume: 10 Pages: 1391-1445

    • Peer Reviewed
  • [Journal Article] Nonparametric Conditional Density Estimation Using Piecewise-Linear Path Following for Kernel Quantile Regression2009

    • Author(s)
      I. Takeuchi, K. Nomura, T. Kanamori
    • Journal Title

      Neural Computation

      Volume: vol.21, num. 2 Pages: 533-559

    • Peer Reviewed
  • [Journal Article] Robust Boosting Algorithm against Mislabelling in Multi-Class Problems2008

    • Author(s)
      T. Takenouchi, S. Eguchi, N. Murata, T. Kanamori
    • Journal Title

      Neural Computation

      Volume: vol.20, num. 6 Pages: 1596-1630

    • Peer Reviewed
  • [Presentation] Relative density-ratio estimation for robust distribution comparison2011

    • Author(s)
      M. Yamada, T. Suzuki, T. Kanamori, H. Hachiya, and M. Sugiyama
    • Organizer
      Neural Information Processing Systems
    • Place of Presentation
      Granada, Spain
    • Year and Date
      2011-12-13
  • [Presentation] A Bregman extension of quasi-Newton updates2010

    • Author(s)
      T. Kanamori and A. Ohara
    • Organizer
      Information Geometry and its Applications
    • Place of Presentation
      Germany
    • Year and Date
      2010-08-02
  • [Presentation] Direct density ratio estimation with dimensionality reduction SIAM2010

    • Author(s)
      Sugiyama, M., Hara, S., von Bunau, P., Suzuki, T., Kanamori, T.,& Kawanabe, M
    • Organizer
      International Conference on Data Mining Columbus
    • Place of Presentation
      Ohio, USA
    • Year and Date
      2010-05-29
  • [Presentation] Condition Number Analysis of Kernel-based Density Ratio Estimation2009

    • Author(s)
      T. Kanamori, T. Suzuki, M. Sugiyama
    • Organizer
      Numerical Mathematics in Machine Learning(NUMML2009)
    • Place of Presentation
      Montreal, Canada
    • Year and Date
      2009-06-18
  • [Presentation] Efficient Direct Density Ratio Estimation for Non-stationarity Adaptation and Outlier Detection2008

    • Author(s)
      T. Kanamori, M. Sugiyama, and S. Hido
    • Organizer
      Neural Information Processing Systems
    • Place of Presentation
      Vancouver, B. C., Canada
    • Year and Date
      2008-12-16
  • [Book] Density Ratio Estimation in Machine Learning2012

    • Author(s)
      M. Sugiyama, T. Suzuki, T. Kanamori
    • Total Pages
      119-297
    • Publisher
      Cambridge University Press
  • [Book] パターン認識(Rで学ぶデータサイエンス5)2009

    • Author(s)
      金森敬文,竹之内高志,村田昇
    • Total Pages
      1-153
    • Publisher
      共立出版

URL: 

Published: 2013-07-31  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi