• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Realization of ultraprecise single-ion implantation using laser-cooling for formation of NV-center arrays

Research Project

  • PDF
Project/Area Number 20H00145
Research Category

Grant-in-Aid for Scientific Research (A)

Allocation TypeSingle-year Grants
Section一般
Review Section Medium-sized Section 14:Plasma science and related fields
Research InstitutionNational Institutes for Quantum Science and Technology

Principal Investigator

Saitoh Yuichi  国立研究開発法人量子科学技術研究開発機構, 高崎量子応用研究所 先進ビーム利用施設部, 部長 (40360424)

Co-Investigator(Kenkyū-buntansha) 岡本 宏己  広島大学, 先進理工系科学研究科(先), 教授 (40211809)
伊藤 清一  広島大学, 先進理工系科学研究科(先), 助教 (70335719)
Project Period (FY) 2020-04-01 – 2024-03-31
Keywordsイオントラップ / レーザー冷却 / 単一イオン引出し / NVセンター / 多量子ビット
Outline of Final Research Achievements

As a new technology for producing nitrogen atom (N) - carbon atom vacancy (V) pairs (NVC), which are one of the point defects in diamond and are expected to operate at room temperature as a quantum device, by ion implantation, we carried out the development of a technology to implant nitrogen ions accelerated to 10 keV one by one with nanoscale positional accuracy. To be concrete, we have succeeded in developing a linear pole trap (LPT) type ion source that can extract nitrogen ions with ultra-low emittance by sympathetic cooling with Ca ions. We succeeded in continuously extracting one Ca ion at a time from the LPT-type ion source. In addition, we designed and fabricated an acceleration lens that can accelerate the extracted nitrogen ions to 10 keV and at the same time converge to a nanometer size, aiming to fabricate Qubits that operate at room temperature.

Free Research Field

加速器科学

Academic Significance and Societal Importance of the Research Achievements

1個のイオンを10数keVのエネルギーでナノメーターの位置精度で注入する技術の開発に目途を立てたことにより、これまで多くの材料開発に利用されてきたイオン注入法の注入精度を極限まで高めることに貢献し、量子もつれ等を利用する量子材料開発の扉を開く成果である。また、本研究開発により、室温で動作する量子コンピュータや量子暗号通信、超高感度量子センサへの応用の期待が高いダイヤモンド中の窒素-空孔センターの多量子ビット化を大きく前進させる。

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi