• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Heterosynaptic platform functionalized by topological control of oxygen vacancy distribution in memristive devices

Research Project

  • PDF
Project/Area Number 20H00248
Research Category

Grant-in-Aid for Scientific Research (A)

Allocation TypeSingle-year Grants
Section一般
Review Section Medium-sized Section 21:Electrical and electronic engineering and related fields
Research InstitutionOsaka University

Principal Investigator

Sakai Akira  大阪大学, 大学院基礎工学研究科, 教授 (20314031)

Project Period (FY) 2020-04-01 – 2024-03-31
Keywordsメモリスタ / ヘテロシナプス / 4端子 / ニューラルネットワーク / 酸素空孔 / 高温動作 / クロスバー構造 / パブロフ型条件付け連合学習
Outline of Final Research Achievements

To realize AI hardware that exhibits higher-order brain functions, we aimed to create a device and circuit foundation consisting of heterosynapses interconnected in multiple dimensions, with the functional principle of controlling the topology of oxygen vacancy distributions in memristive materials. Focusing on reduced amorphous gallium oxide and titanium oxide thin films, we conducted experimental and theoretical analyses of oxygen vacancy behavior and elucidated the mechanisms of electrical conduction and resistance change. By developing memristors that can apply electric fields in various dimensions and geometries, such as two-terminal capacitor-type, planar-type, crossbar-type, and four-terminal planar-type and crossbar-type, we succeeded in constructing a platform that mimics higher-order brain functions, such as synaptic weight gate modulation and associative learning, as artificial synaptic elements.

Free Research Field

半導体物性工学

Academic Significance and Societal Importance of the Research Achievements

本研究はメモリスタ内の酸素空孔分布トポロジーの変調によって、多様な抵抗状態・抵抗遷移を発現させることに独自性があり、酸素空孔の電界下挙動に関して獲得された学術的知見は、材料種によらないコモンメカニズムの理解に通じ、不純物イオンを切り口にした創造的な素子設計指針へと展開できる。また、還元性酸化ガリウムメモリスタで600Kまでの高温動作が実証された成果は新たな次元の産業応用へ繋げられる。さらに、新たに開発された4端子クロスバー型メモリスタは、高度の集積化が可能な構造を有していることから、連合学習等の高次脳機能を模倣できる次世代AIハードウェアへ展開でき、その社会的意義は大きい。

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi