2023 Fiscal Year Final Research Report
Construction of digital twin that fuses AI and physical model to optimize building energy system
Project/Area Number |
20H00273
|
Research Category |
Grant-in-Aid for Scientific Research (A)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Medium-sized Section 23:Architecture, building engineering, and related fields
|
Research Institution | The University of Tokyo |
Principal Investigator |
Ooka Ryozo 東京大学, 生産技術研究所, 教授 (90251470)
|
Co-Investigator(Kenkyū-buntansha) |
長井 達夫 東京理科大学, 工学部建築学科, 教授 (00316001)
池田 伸太郎 東京工業大学, 環境・社会理工学院, 准教授 (00843525)
菊本 英紀 東京大学, 生産技術研究所, 准教授 (80708082)
崔 元準 東京大学, 生産技術研究所, 助教 (30817458)
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Keywords | デジタルツイン / 人工ニューラルネットワーク / 最適化システム / メタヒューリスティクス |
Outline of Final Research Achievements |
In this research, in order to build a digital twin that mimics the energy system in a real building, the following three items have been investigated: (1) development of modeling methods for building components, (2) development of fully automatic control methods based on optimization tools, and (3) development of an integrated platform for the above, i.e. a digital twin. Regarding the modeling method (1), we developed a method based on artificial neural networks (ANN) with the aim of real-time prediction. Regarding (2), we investigated methods based on metaheuristics and reinforcement learning, and confirmed their characteristics. As to (3), the development items (1) and (2) were combined, and a digital twin of the building energy system of an actual building was constructed to create an integrated platform that connects virtuality and reality.
|
Free Research Field |
建築環境工学
|
Academic Significance and Societal Importance of the Research Achievements |
人工知能の特性とその建築設備応用可能性の検討を行った。また開発されたデジタルツインにおいては、設計業務効率等の改善とともに自動的かつ継続的な省エネ化や省CO2化、在室者の快適性向上といった効果が多様な建物で期待できる。
|