• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Self-atomic rearrangement technique based on the "shaking" of high-density high-frequency currents

Research Project

  • PDF
Project/Area Number 20H02025
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 18010:Mechanics of materials and materials-related
Research InstitutionNagoya University

Principal Investigator

TOKU Yuhki  名古屋大学, 工学研究科, 准教授 (60750180)

Co-Investigator(Kenkyū-buntansha) 巨 陽  名古屋大学, 工学研究科, 教授 (60312609)
Project Period (FY) 2020-04-01 – 2023-03-31
Keywords薄膜 / 原子配列 / ナノ材料 / 界面 / 電子風力 / 原子拡散 / エレクトロマイグレーション
Outline of Final Research Achievements

In this study, we have achieved atomic rearrangement in metallic thin films by periodic "oscillations" of electron wind force induced by high-density currents at high frequencies (>100 kHz) on the atomic arrangement. In-situ observations using a high-resolution transmission electron microscope were also performed to elucidate the science behind the atomic rearrangement. In addition, to quantitatively evaluate the quality of thin films, which is important for applications, we investigated the mechanical and electrical properties of thin films before and after the application of electric current. To achieve the objectives, the following three research goals were pursued under the three-year plan: 1. crystal structure analysis and material characterization of thin films, 2. visualization of dynamic behavior of atomic arrangement changes, and 3. construction of a theoretical model for the mechanical interaction between high-density high-frequency current and atoms.

Free Research Field

材料力学

Academic Significance and Societal Importance of the Research Achievements

本研究は,高周波の高密度電流がなす電子風力によって金属薄膜の原子配列を制御する世界初の研究であり,熱処理に依らない原子の再配列技術として材料科学分野を拡張する学術的に極めて高い独創性・創造性を有している.さらに,いままで結晶構造の制御が熱処理や結晶成長のみによって実現されてきた現状を打破し,新たに電子風力を基盤とした原子再配列法を世界に先駆けて発信することができる. これは,熱処理に依らない原子の再配列現象として従来熱力学的に捉えられてきた材料科学を拡張し,物理化学や固体物理,物性物理などの広い学問分野にも大きな波及効果が期待できる.

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi