2023 Fiscal Year Final Research Report
Quality assurance by systematized modeling of uncertainties and stochastic prediction of fatigue life for 3D printing
Project/Area Number |
20H02034
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 18010:Mechanics of materials and materials-related
|
Research Institution | Keio University |
Principal Investigator |
Takano Naoki 慶應義塾大学, 理工学部(矢上), 教授 (10206782)
|
Co-Investigator(Kenkyū-buntansha) |
植松 美彦 岐阜大学, 工学部, 教授 (80273580)
松田 哲也 筑波大学, システム情報系, 准教授 (90345926)
|
Project Period (FY) |
2020-04-01 – 2024-03-31
|
Keywords | 確率的シミュレーション / 不確かさのモデリング / 金属3D積層造形 / 確率的疲労寿命予測 / ばらつき / 歯科補綴物 / ヒートシンク / 幾何的精度 |
Outline of Final Research Achievements |
For the systematic uncertainty modeling based on the governing equation, a methodology of parameterization and sampling for the physical and geometrical parameters and the boundary conditions was established. The design method considering the knowledge of manufacturability and assemblability acquired by past experiences that is unique to metal additive manufacturing was discussed. First, a prediction method of fatigue life considering its variability for titanium prosthetic clasps has been developed to be used in the design phase before manufacturing by the finite element analysis using CAD data. Furthermore, the geometrical accuracy of circular holes for assembly by mechanical joint, support-less additive manufacturing of circular holes with peripheral support, evaluation of properties of porous support with 2D lattice microarchitecture and the design of copper alloy heat sink were studied.
|
Free Research Field |
計算力学
|
Academic Significance and Societal Importance of the Research Achievements |
金属3D積層造形は新しい製造法として注目されているが、造形品の性能のばらつきや幾何的精度の問題があり、多くのノウハウを必要とするため、設計段階での品質保証が難しいという問題があった。3D積層造形に特有の不確かさを、支配方程式の物理的パラメータ、幾何的パラメータ、境界条件の観点から系統的にモデリングすることにより、造形前にばらつきを考慮したバーチャルテストを実現した。特にモデリングが難しい幾何的パラメータと境界条件の不確かさのパラメタリゼーションとサンプリング法を具体的に提示した。造形可能性と組立性を考慮した設計手法は、金属3D積層造形の発展と、熟練技術の伝承にも貢献するものである。
|