2022 Fiscal Year Final Research Report
A study on the algorithms for accelerating human motor learning under human-robot cooperative motor learning system
Project/Area Number |
20H02111
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 20020:Robotics and intelligent system-related
|
Research Institution | Tokyo University of Agriculture and Technology |
Principal Investigator |
Kondo Toshiyuki 東京農工大学, 工学(系)研究科(研究院), 教授 (60323820)
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Keywords | 協調運動学習 / 動的機能結合解析 / リハビリ |
Outline of Final Research Achievements |
In this study, we developed four robotic agents, which could manipulate cooperative motor learning, and compared the effect of their intervening strategies (i.e., novice, expert, level-up, and skill-level-adjustment agents) on individual motor performance. The result suggests that the novice agent realizes significantly higher posterior motor performance than the expert agent. Moreover, we found that skill-level adjust agent, which grows with the subject's motor skill level, is able to provide even better motor support than the others. We also proposed a dynamic functional connectivity analysis method that combines tensor decomposition and TVGL methods. We applied the method to sleep EEG, --- the brain states are medically labeled ---, and verified the validity.
|
Free Research Field |
知能情報学
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では、ヒトとロボットの協調運動学習を対象に、ロボットエージェントの制御アルゴリズムを4種類(初心者、熟練者、レベル調節、固定成長)考案し、被験者実験を行った。実験の結果、被験者の運動技能レベルにあわせてともに成長するレベル調節エージェントが最良であることが示された。ロボットリハビリテーションにおける最適な支援の量は患者ごとに異なり、また患者の機能改善とともに変化すると考えられることから、本研究の成果は、将来のロボットリハビリテーション開発にとって有益と考えられる。
|