2023 Fiscal Year Final Research Report
Investigation of thermal capacitors based on electronic phase transition materials and development of highly efficient thermoelectric power generation system
Project/Area Number |
20H02137
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 21010:Power engineering-related
|
Research Institution | Kanagawa Institute of Industrial Sclence and Technology (2023) Tokyo University of Science (2020-2022) |
Principal Investigator |
Shiojiri Daishi 地方独立行政法人神奈川県立産業技術総合研究所, 電子技術部, 研究員(任期有) (30784235)
|
Co-Investigator(Kenkyū-buntansha) |
飯田 努 東京理科大学, 先進工学部マテリアル創成工学科, 教授 (20297625)
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Keywords | 熱電変換技術 / 蓄熱材料 / 電子・構造相転移 / 電子物性 / 熱物性 |
Outline of Final Research Achievements |
This study presents findings on recycling large amounts of unused heat below 300°C and enhancing heat utilization technology. A solid phase transition latent heat storage material was introduced to regulate temperatures on the heat source side for enhancing the power generation performance and prolonging the service life of a thermoelectric generation module. Through open circuit voltage evaluation via thermal cycling tests, a temperature stabilization effect was observed on the high-temperature side of the thermoelectric module, particularly near the phase transition point of the metal-insulator transition. To comprehensively investigate the thermal functionality stemming from the electronic characteristics of the material, a thermophysical property evaluation and analysis system was devised. This system facilitated the exploration of the relationship among electric field application, electrical assessment, and thermal functionality.
|
Free Research Field |
熱電発電 / 蓄熱材料 / 金属酸化物 / 相転移 / 電子・熱物性
|
Academic Significance and Societal Importance of the Research Achievements |
持続可能な社会の実現に向けて、エネルギー構造改革が急務とされている。電気の最大の副産物でもある未利用熱エネルギーの資源化と制御技術の高度化が求められている。本助成研究では、熱電モジュールにおける熱源側の調温機構として一定温度での急速蓄放熱と高蓄熱密度とを両立した金属酸化物材料を熱電システムへ応用し、発電特性への寄与について熱サイクル試験から明らかにした。その結果、従来に比べて小型・高効率・長寿命な熱電発電技術を確立し、材料の電子・熱的物性の同時評価システムと理論計算手法による解析環境も構築した。
|