2022 Fiscal Year Final Research Report
Research and development of "ultra" high-strength Copper alloys for electronic devices utilizing heterogeneous-nano structure
Project/Area Number |
20H02461
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 26040:Structural materials and functional materials-related
|
Research Institution | Kanazawa University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
三浦 博己 豊橋技術科学大学, 工学(系)研究科(研究院), 教授 (30219589)
青柳 吉輝 東北大学, 工学研究科, 准教授 (70433737)
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Keywords | 銅合金 / ヘテロナノ組織 / 変形双晶 / 単純強圧延 |
Outline of Final Research Achievements |
Heterogeneous nano (HN) structure consisting of nanometer-ordered deformation twin domains, low-angle lamellae, and shear bands was introduced into precipitation- and solution-strengthening Cu alloys by simple and heavy cold rolling to achieve an ultra-fine-grained structure and ultra-high strength without deteriorating electrical conductivity, which is the most important property of Cu alloys for electronic devices. For precipitation-strengthening alloys, a strength approximately 1.5 times higher than that of commercial alloys was achieved without compromising the conductivity by optimizing the thermomechanical treatment process. In the case of solution-strengthening alloys, the addition of trace alloying elements and improvements in the rolling process have resulted in strengths nearly twice that of conventional alloys. Based on the obtained results, a design guideline for ultra-high-strength Cu alloys utilizing the HN structure was proposed.
|
Free Research Field |
金属材料
|
Academic Significance and Societal Importance of the Research Achievements |
近年の電子機器の小型化によって,それらに使用される銅合金には,高強度と高導電性という相反する特性を極めて高いバランスで達成する事が要求されている.しかし,既存の強化機構(析出強化,固溶強化,加工強化,結晶粒微細化強化)とその組み合わせでは,既に要求特性に応えることが難しくなっている.本研究では,申請者らが新たに見いだしたヘテロナノ組織を銅合金に導入することで,これまでの常識を越える特性を有する銅合金の創成に成功した.これは,現状限界に達していた銅合金の性能向上へのブレークスルーとなり得る.また,ヘテロナノ組織は極めて平易な加工法によって導入可能なため,早期の社会実装も期待できる.
|