2023 Fiscal Year Final Research Report
Study on the photoelectrochemical process for the conversion of small molecules in the gas phase by controlling the active species
Project/Area Number |
20H02525
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 27030:Catalyst and resource chemical process-related
|
Research Institution | Tokyo Metropolitan University (2022-2023) The University of Kitakyushu (2020-2021) |
Principal Investigator |
Amano Fumiaki 東京都立大学, 都市環境科学研究科, 教授 (10431347)
|
Project Period (FY) |
2020-04-01 – 2024-03-31
|
Keywords | 光電気化学 / 半導体電極 / 光触媒 / 水分解 / メタン変換 / 水素製造 |
Outline of Final Research Achievements |
We investigated methane conversion reactions using a photoelectrochemical cell with a gas-diffusion tungsten trioxide (WO3) photoanode and a proton exchange membrane as a solid polymer electrolyte. When irradiated with blue light (with a wavelength of approximately 453 nm) in the presence of a humidified methane stream, ethane was produced with selectivity exceeding 60%, and the production rate increased with increasing incident light intensity. In contrast, under UV light irradiation, carbon dioxide production was dominant, and the selectivity for ethane production was reduced to be 30%. Electrolyte flow-type electron spin resonance measurements were performed to determine the Faradaic efficiency (current efficiency) of hydroxyl radical based on the photocurrent density value, and it was found that hydroxyl radicals as an active species are generated more efficiently under visible light irradiation compared to ultraviolet light irradiation.
|
Free Research Field |
光電気化学
|
Academic Significance and Societal Importance of the Research Achievements |
再生可能エネルギーの有効活用を目的とし、光や電気を使って気相中の小分子を燃料に転換するPower to Fuel技術が注目されている。光電気化学反応は、液相中での物質転換反応には有効であるが、気相中の小分子の転換への応用は難しかった。本研究では、三相界面を適切に設計した全固体型の光電気化学システムの開発によって気相反応の評価を可能とし、水蒸気やメタンの光電解反応プロセスについて研究開発を行った。半導体電極や反応条件の検討によって、メタン分子を室温で活性化するための活性種が明らかとなり、光電解システムの耐久性を向上させるための学術的知見を得ることができた。
|