• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Development of tip-enhanced and time-resolved THz nanospectroscopy

Research Project

  • PDF
Project/Area Number 20H02625
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 29020:Thin film/surface and interfacial physical properties-related
Research InstitutionInstitute of Physical and Chemical Research

Principal Investigator

HAYAZAWA NORIHIKO  国立研究開発法人理化学研究所, 開拓研究本部, 専任研究員 (90392076)

Project Period (FY) 2020-04-01 – 2023-03-31
Keywords先端増強 / テラヘルツ分光 / 近接場 / 時間分解 / 顕微分光
Outline of Final Research Achievements

We have developed near-field THz spectroscopy with high spatial resolution and high temporal resolution by combining high spatial resolution scanning probe microscopy (SPM) and high temporal resolution THz spectroscopy. 1) nano laser THz emission spectroscopy (nano-LTEM), 2) nano THz time-domain spectroscopy (nano-THz-TDS), and 3) nano optical-pump THz-probe spectroscopy (nano-OPTP) were integrated in a mini metallic chamber. We have developed non-contact AFM as SPM based on qPlus sensor attached with a gold probe tip and accommodated it into the same chamber. We succeeded in detecting the near-field THz-TDS signal by modulating the near-field THz signal by oscillating the gold probe tip in the vertical direction of the sample and performing lock-in detection. We improved the THz-TDS signal acquisition time, making it more than 100 times faster than before. We were able to detect an oscillating signal with frequencies up to 10 kHz, using 1 μs integration time per point.

Free Research Field

近接場光学

Academic Significance and Societal Importance of the Research Achievements

超高速分光法と言われる技術は光技術を中心にフェムト秒に到る手法が数多ある。しかし、それら技術では空間分解能を犠牲としており、測定対象が均一であると仮定した平均値を検出する。超解像技術も光学技術、走査プローブ顕微鏡や電子顕微鏡などナノテクに寄与してきた技術が数多存在する。しかし、測定対象が微小化することに伴う信号微弱化のため時間分解能は犠牲となっている。半導体デバイス・分子デバイスの他あらゆるデバイスは、その機能を他種との分子レベルでの相互作用及び過渡的励起状態を介して発現している。本研究課題では超解像と超高速を両立した顕微分光手法の新たな「目」を社会に提供し、物質機能の本質的な理解に貢献する。

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi