2023 Fiscal Year Final Research Report
Room temperature injection gain in a highly strained ultrathin germanium-based structures under multi-axis mechanical stress
Project/Area Number |
20H02635
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 30010:Crystal engineering-related
|
Research Institution | The University of Tokyo |
Principal Investigator |
Fukatsu Susumu 東京大学, 大学院総合文化研究科, 教授 (60199164)
|
Co-Investigator(Kenkyū-buntansha) |
金崎 順一 大阪公立大学, 大学院工学研究科, 教授 (80204535)
安武 裕輔 東京大学, 大学院総合文化研究科, 技術専門職員 (10526726)
|
Project Period (FY) |
2020-04-01 – 2024-03-31
|
Keywords | 超薄Ge / 多軸応力 / 超高歪 / 直接遷移端 / 光利得 / 電流注入 / 共振器ポラリトン / 高正孔移動度 |
Outline of Final Research Achievements |
An attempt was made to achieve gain and lasing under current injection at room temperature in a strained ultrathin Ge subject to precision-controlled multi-axis mechanical stress. Used as the platform was a new class of ultrathin Ge-based microstructures including thin layers stacked by boding or Xant-mediated epitaxy. Major advances include the development of a new class of micro-mechanical stressors, the observation of stress-induced circular-polarized gain near the split-off hole electronic Raman transition through the newly developed spin-sensitive femtosecond luminescence correlation spectroscopy, mimicry of dissipative direct-edge excitonic cavity-polariton that allowed to monitor the dynamics of room-temperature Bose-Einstein condensation in a weakly coupled immiscible system. Additionally, a novel cross-dimensional hybrid Ge-based interface has been found, which enabled a high 2-D hole mobility and quantum oscillations of magnetoresistance even without modulation doping.
|
Free Research Field |
半導体物理学、量子エレクトロニクス
|
Academic Significance and Societal Importance of the Research Achievements |
IV族半導体レーザーは物質科学の究極目標のひとつであり、低温のフェムト秒パルス励起とはいえ擬似連続的かつGeバンド端近傍のとくに通信帯波長で円偏光利得が達成できたことは社会的にも意義があり、当該研究分野に大きなインパクトをもつ。 一方、これを可能にした新規開発の応力印加機構とスピン敏感なフェムト秒発光励起相関法は、物性評価の技術開発の位置づけでも意義深い。さらに一定の物性評価が定まった超薄Geの作製技術は、薄膜技術の進化形に明確に位置づけられることになる。一方、ハイブリッドGe界面における正孔ガス、模擬ポラリトンシステムで見出された室温ボーズ・アインシュタイン凝縮は物理の観点からも意義深い。
|