• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Construction of Hierarchical Materials Science for Creation of Innovative Functional Oxides

Research Project

  • PDF
Project/Area Number 20H02682
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 31020:Earth resource engineering, Energy sciences-related
Research InstitutionAichi Institute of Technology

Principal Investigator

Ichino Yusuke  愛知工業大学, 工学部, 教授 (90377812)

Co-Investigator(Kenkyū-buntansha) 吉田 隆  名古屋大学, 工学研究科, 教授 (20314049)
Project Period (FY) 2020-04-01 – 2024-03-31
Keywords超伝導 / 薄膜 / 結晶成長 / エピタキシャル成長
Outline of Final Research Achievements

This study focuses on functional oxide materials, specifically RE123 superconductors, aiming to improve their properties through nanostructure control. However, thin-film technology has limitations in achieving sufficient volume for various applications. The goal is to develop a high critical current density, strong magnetic field generating pseudo-superconducting bulk magnet. The study was divided into "nano-class" and "micro-class" studies. In the nano-class, the Pulse Laser Deposition (PLD) method was used for epitaxial growth of RE123 thin films. In the micro-class, the aim was to increase the thickness of the film while maintaining the excellent functionality obtained at the nano-class. The study results showed that it was challenging to grow YBCO epitaxial thin films on water-soluble Ba3Al2O6 (BAO) intermediate layers due to high-temperature reactions. The study also found that the BAO loses its water solubility when exposed to the epitaxial growth conditions of YBCO.

Free Research Field

機能性酸化物工学

Academic Significance and Societal Importance of the Research Achievements

本研究の学術的意義としては、YBCO自立薄膜の作製を実現することで、従来困難であった高性能かつ自立膜のスタックによって十分な体積が得られる点が挙げられる。特に、水溶性犠牲層を用いた剥離技術は、他の機能性酸化物への展開も可能性であり、そのメカニズム解明は学術的に意義深い。社会的意義としては、YBCO自立薄膜をスタックした擬似バルクは、従来のバルク材料に比べて臨界電流密度が高いため、より小型かつ安価な液体窒素で動作する高効率なフライホイールやNMRなどの応用が期待される点が挙げられる。

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi