2022 Fiscal Year Final Research Report
Development of pai-Radical Materials for Electronic Devices Utilizing Topological Excited Spin-State Control
Project/Area Number |
20H02715
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 32020:Functional solid state chemistry-related
|
Research Institution | Osaka Metropolitan University (2022) Osaka City University (2020-2021) |
Principal Investigator |
TEKI Yoshio 大阪公立大学, 大学院工学研究科, 客員教授 (00180068)
|
Co-Investigator(Kenkyū-buntansha) |
藤原 正澄 岡山大学, 自然科学学域, 研究教授 (30540190)
松下 未知雄 名古屋大学, 理学研究科, 准教授 (80295477)
鐘本 勝一 大阪公立大学, 大学院理学研究科, 教授 (40336756)
仕幸 英治 大阪公立大学, 大学院工学研究科, 教授 (90377440)
吉田 考平 大阪公立大学, 大学院理学研究科, 博士奨励研究員 (20845789)
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Keywords | πラジカル / ペンタセン誘導体 / πトポロジー / 光耐久性 / 電界効果トランジスタ性能 / 励起状態ダイナミクス / 有機半導体 |
Outline of Final Research Achievements |
In this project, π-radical materials, which excited-state dynamics were controlled using π-conjugation network (π-topology), were synthesized and their photochemical stability was evaluated. As a result, we succeeded in developing pentacene-radical linked systems with remarkable high photostability and hole transport property. Their photochemical stability was more than 100 times higher than that of TIPS-pentacene (6,13-bis(triisopropylilylethynyl) pentacene), which is known as a representative organic semiconductor material. In addition, we fabricated field-effect transistor devices using these π-radical materials and evaluated their performance to evaluate their usefulness as organic electronics materials. Although the mobility was about one order of magnitude lower than that of TIPS-pentacene thin films fabricated under similar conditions, the amplification ratio of the current was confirmed to be comparable, demonstrating that they are promising organic semiconductor materials.
|
Free Research Field |
スピン科学、物理化学
|
Academic Significance and Societal Importance of the Research Achievements |
ペンタセン骨格を有するπラジカル連結系の分子内のπトポロジーを利用して励起状態ダイナミクスを制御する事により、有機半導体の代表的な物質であるTIPS-ペンタセンを遥かに凌駕する光耐久性が実現できた点は、学術的意義が高いと判断される。また、それらの光耐久性を向上したπラジカル材料が、有機電界効果トランジスタ性能を示し、比較的高い正孔輸送能と電界効果トランジスタとしての増幅特性を実証できた点は、πラジカル材料の有機半導体材料としての有望性を明瞭に示す結果であり、その社会的意義は高いと思われる。
|