• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Molecular design based on controlled ion-ordered structure in highly concentrated battery electrolytes

Research Project

  • PDF
Project/Area Number 20H02823
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 36010:Inorganic compounds and inorganic materials chemistry-related
Research InstitutionYamaguchi University

Principal Investigator

Fujii Kenta  山口大学, 大学院創成科学研究科, 教授 (20432883)

Co-Investigator(Kenkyū-buntansha) 松上 優  熊本高等専門学校, リベラルアーツ系理数グループ, 准教授 (50455177)
片山 祐  大阪大学, 産業科学研究所, 准教授 (70819284)
Project Period (FY) 2020-04-01 – 2023-03-31
KeywordsLiイオン電池 / 電解質溶液 / 超濃厚電解液 / 溶液構造解析 / イオン秩序構造
Outline of Final Research Achievements

We investigated structural and electrochemical properties of highly concentrated Li-ion battery (LIB) electrolytes via both experimental and theoretical techniques. Major topics were shown below.
(1) Structural and thermodynamic properties of Li ion-ordered complexes in highly concentrated electrolytes were investigated by experimental (mainly, X-ray scattering and vibrational spectroscopy) and all-atom molecular dynamics (MD) simulations. (2) in-situ SEIRA spectra were measured for highly concentrated electrolyte to elucidate the electrode/electrolyte interface structure, and the results were compared with those from MD simulations. (3) LIB performance of the highly concentrated electrolytes was evaluated via systematic electrochemical measurements for commonly used LIB electrode materials to optimize electrolyte composition.

Free Research Field

溶液化学

Academic Significance and Societal Importance of the Research Achievements

高濃度のLi塩を溶解した超濃厚電解液の構造およびエネルギー的特性を分子レベルで解明し、Liイオン電池電解液の性能を分子レベルで設計することを目的とした基礎研究を遂行した。超濃厚電解液のバルク構造および電極界面構造を実験・理論の両面から調べた結果、超濃厚化に伴うLiイオンの秩序構造形成が電気化学特性と密接に関係しており、その構造秩序性は塩濃度に加えて、溶媒分子の特徴(主に、分子サイズと電子対供与性)に強く依存することを見出した。これらの結果に基づき、溶液化学的観点で超濃厚電解液の特性を制御することが電池電極反応のメカニズム解明、引いては、電池特性の向上に有効であることを指摘した。

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi