• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Development of oxygen evolution catalysts with high intrinsic activity and stability by exploring the compounds with strong electron-electron correlation within the d-orbital

Research Project

  • PDF
Project/Area Number 20H02831
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 36020:Energy-related chemistry
Research InstitutionKitami Institute of Technology

Principal Investigator

Hirai Shigeto  北見工業大学, 工学部, 准教授 (80756669)

Co-Investigator(Kenkyū-buntansha) 八木 俊介  東京大学, 生産技術研究所, 准教授 (60452273)
大野 智也  北見工業大学, 工学部, 教授 (90397365)
Project Period (FY) 2020-04-01 – 2023-03-31
Keywords酸素発生反応 / 酸性電解液 / 二元機能 / 表面構造 / 高活性 / 高耐久性 / 溶出 / イリジウム
Outline of Final Research Achievements

We have achieved the initial research goal to develop a bifunctional catalyst toward oxygen evolution reaction(OER) with both high intrinsic activity and stability by preventing the lattice collapse after repeated OER cycling even if the catalyst is under acidic conditions, which is known to be the most harsh condition. Specifically, we found that the substitution of Ir-site with Mn for BaIrO3 leads to a remarkably high intrinsic activity and stability toward OER.
This excellent OER performance was achieved by slightly increasing the Ir-dissolution and balancing the elemental dissolution in BaIr1-xMnxO3 to maintain the initial surface structure that reflects the OER stable crystal structure of BaIr1-xMnxO3. Since BaIr1-xMnxO3 is equipped with both high OER activity and stability under acidic conditions, it has brought a big impact leading to possible application as an electrode for energy conversion technologies.

Free Research Field

エネルギー関連化学

Academic Significance and Societal Importance of the Research Achievements

水の電気分解セルや金属空気二次電池の電極に搭載できるレベルの酸素発生(OER)触媒を開発できれば、水素燃料の製造や電気自動車の実用化につながる。しかし、そのためには高い初期活性とともに、高い安定性をもった触媒が必須であるが、多数サイクルのOERで触媒表面の組成が変化してしまい、OERに対して安定な表面構造が保てず、最終的には安定性が低下するという長年の課題が存在した。
本研究ではBaIrO3のIrサイトをMnで置換することで、この難題の解決に成功しただけでなく、そのベースとなる反応機構を解明したため、電気化学の発展とともに、水素燃料の製造や電気自動車の実用化に直結した成果が得られたと言える。

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi