• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Annual Research Report

Explainable AI diagnostic system for breast cancer using tomosynthesis

Research Project

Project/Area Number 20H03738
Research InstitutionTohoku University

Principal Investigator

植田 琢也  東北大学, 医学系研究科, 教授 (40361448)

Co-Investigator(Kenkyū-buntansha) 佐谷 望  東北医科薬科大学, 医学部, 助教 (50816444)
原田 達也  東京大学, 先端科学技術研究センター, 教授 (60345113)
森 菜緒子  東北大学, 医学系研究科, 助教 (90535064)
Project Period (FY) 2020-04-01 – 2024-03-31
Keywords人工知能 / 乳癌 / 画像診断
Outline of Annual Research Achievements

2022年度は、学習を行う症例を1000例へと増やし正常・良性石灰化・良性腫瘍・悪性腫瘍を分類するAIモデルの学習を行った。
近年CNNに変わって急速に発展しているTransformerのdeep learningを適応し、乳癌病変の同定を向上する研究を行った。TransformerはCNNと異なり、複数の領域から全体を包括する特徴量を抽出できる手法であり、局所的な抽出量をとらえることに特化したCNNのdeep learning modelと比較して、Transformerは読影医師が認識している乳癌の広がりを同定するのにすぐれていることが分かった。
また、これまで教師あり学習を主体として進めてきたdeep learningから、教師無しで学習をすすめるための研究にとりくんでいる。距離学習は、その形態の特徴を自動的に抽出できる方法であり事前の情報なく学習が可能であるとともに、悪性/良性の鑑別な病変について、その特徴を認識するための手法として特化している。本年度は距離学習の初期的検討を行うとともに、2023年度以降本格的な乳癌診断モデルへの組込みを予定している。
またこれまで使用してきた聖路加国際病院の乳癌トモシンセシスの画像に加えて、本年度は東北大学乳腺外科の画像データへの、アノーテーションを行い研究に必要なデートセット作成を行った。東北大学では、マンモグラフィ、トモシンセシス、MRIの画像が利用可能で有り、マルチモダリティーの研究が可能となる。2023年度ではこのデータを用いた研究を実施する。

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

乳癌の診断において、当所の医師の説明可能な項目に加えて教師無し学習を用いた手法について新たに検討が進んでおり、研究課題提出時の見通しよりも計画の進捗は進んでいると考える。

Strategy for Future Research Activity

今後については

1) 距離学習を用いた教師無し学習の検討をさらに発展させる。
2) 東北大学のマルチモダリティーのデータセットの利用が可能となり、このデータセットを用いた新たな研究の方向性が立案可能である。
3) さらに、近年病理などで、複数の画像スケールの学習を組み合わせた多段的なAI研究が行われている。本領域でも石灰化など微細なレベルでの特徴と、病変の広がりという比較的広い領域の特徴を加味したAIモデルの開発が望まれる。本研究に関して研究立案と開発を実装中である。

  • Research Products

    (4 results)

All 2023 2022

All Journal Article (3 results) (of which Peer Reviewed: 3 results,  Open Access: 3 results) Presentation (1 results)

  • [Journal Article] Machine learning approach to stratify complex heterogeneity of chronic heart failure: A report from the CHART-2 Study2023

    • Author(s)
      Kenji Nakano, Kotaro Nochioka, Satoshi Yasuda, Daito Tamori, Takashi Shiroto, Yudai Sato, Eichi Takaya, Satoshi Miyata, Eiryo Kawakami, Tetsuo Ishikawa, Takuya Ueda, Hiroaki Shimokawa
    • Journal Title

      ESC Heart Failure

      Volume: online Pages: online

    • DOI

      10.1002/ehf2.14288

    • Peer Reviewed / Open Access
  • [Journal Article] Deep learning model for breast cancer diagnosis based on bilateral asymmetrical detection (BilAD) in digital breast tomosynthesis images2022

    • Author(s)
      Daiki Shimokawa, Kengo Takahashi, Daiya Kurosawa, Eichi Takaya, Ken Oba, Kazuyo Yagishita, Toshinori Fukuda, Hiroko Tsunoda, Takuya Ueda
    • Journal Title

      Radiological Physics and Technology

      Volume: 16 Pages: 20,27

    • DOI

      10.1007/s12194-022-00686-y

    • Peer Reviewed / Open Access
  • [Journal Article] Statistical analysis of mortality rates of COVID-19 patients in Japan across the 4C mortality score risk groups, age groups, and epidemiological waves: A report from the nationwide COVID-19 cohort2022

    • Author(s)
      Hiroaki Baba, Saori Ikumi, Shotaro Aoyama, Tetsuo Ishikawa, Yusuke Asai, Nobuaki Matsunaga, Norio Ohmagari, Hajime Kanamori, Koichi Tokuda, Takuya Ueda
    • Journal Title

      Open Forum Infectious Diseases

      Volume: 10 Pages: ofac638

    • DOI

      10.1093/ofid/ofac638

    • Peer Reviewed / Open Access
  • [Presentation] 乳癌の深層学習Segmentationにおける人工生成Fractal画像を用いた転移学習の有効性の検討2023

    • Author(s)
      八島拓海
    • Organizer
      第32回日本乳癌画像研究会

URL: 

Published: 2023-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi