• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Deep Reinforcement Learning by Simultaneous Learning of Environment Models and Strategies

Research Project

  • PDF
Project/Area Number 20H04301
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 62040:Entertainment and game informatics-related
Research InstitutionThe University of Tokyo

Principal Investigator

Tsuruoka Yoshimasa  東京大学, 大学院情報理工学系研究科, 教授 (50566362)

Project Period (FY) 2020-04-01 – 2023-03-31
Keywords強化学習 / 深層学習
Outline of Final Research Achievements

We developed a planning method that leverages multiple environment models to reduce the impact of errors, and a multi-step model that directly predicts states several steps ahead, successfully achieving efficient deep reinforcement learning. We also designed an intrinsic reward and a latent state representation based on action similarity for unsupervised reinforcement learning in partially observable environments, improving the generalization performance of reinforcement learning. Furthermore, we improved the design of rewards in roguelike games, reduced memory consumption in off-policy reinforcement learning, and realized the construction of highly interpretable strategies through the use of hierarchical reinforcement learning.

Free Research Field

強化学習、自然言語処理、ゲームAI

Academic Significance and Societal Importance of the Research Achievements

本研究成果は、モデルベース強化学習における環境モデルのより良い活用法、内発的報酬の設計、潜在状態表現の改善などを深層強化学習に導入することで、深層強化学習の性能を改善し、より効率的で汎用性の高い学習を実現することに貢献するものである。また、社会的には、本研究の成果は、ビデオゲームだけでなく、自動運転、ロボット制御、エネルギー管理など、実世界の多様なタスクに対する深層強化学習の適用可能性を高めることに貢献する可能性がある。

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi