2022 Fiscal Year Annual Research Report
Determination of the phase diagram of liquid hydrogen and constraints on the interior of Jupiter
Project/Area Number |
20J21098
|
Research Institution | The University of Tokyo |
Principal Investigator |
岡 健太 東京大学, 理学系研究科, 特別研究員(DC1)
|
Project Period (FY) |
2020-04-24 – 2023-03-31
|
Keywords | 金属水素 / 高圧実験 / ダイヤモンドアンビルセル / 木星 / 電気抵抗測定 / X線回折 |
Outline of Annual Research Achievements |
巨大ガス惑星の深部で起こっているとされる「水素の金属化」現象の圧力-温度条件を知ることは、巨大ガス惑星の内部構造や形成過程を知る上で重要である。水素の金属化が予想されている温度圧力領域は100万気圧/1500 K程度である。 昨年度までに開発した技術により、これまで困難だった水素の高温高圧装置への充填、レーザー加熱式ダイヤモンドアンビルセルを用いた水素の電気抵抗測定が可能になった。本年度は発生可能な温度圧力を拡張するための技術開発を行い、特に温度について4000 Kまで安定的に加熱しながら電気抵抗を測定できるようになった。 まず、高温中で水素が電気抵抗用の金属電極と速やかに反応してしまい、融点の下がった電極が融解し回路がショートしてしまう問題があった。これを解決するために、前年度までに用いていた測定に1分以上の時間がかかる「インピーダンス測定」装置による測定をやめ、数秒で測定を行うことのできる「直流測定」装置による測定に切り替えることにした。これにより、最大4000 Kまでの温度領域で回路をショートさせることなく実験を行うことが可能になった。 また、達成可能圧力を向上させるために超高圧実験用のダイヤモンドアンビルを導入した。加圧部分の面積を半分以下にすることで同じ荷重でも、通常のアンビルよりも大きな圧力を発生できる。しかし、100万気圧以上の高圧を目標に実験を行ったが、80万気圧付近で電極どうしが接触して実験続行が不可能になる事態が多発した。これは非常に柔らかい水素試料と試料を覆う硬いガスケット材との圧縮性の違いにより、スパッタリングされた電極が水素試料の内部へめり込んでしまうことが原因であると考えられる。本年度中には、この問題を解決することができなかったため、達成圧力は80万気圧に留まっている。今後、水素供給剤やガスケット剤の改良によりこの問題が解決されることが期待される。
|
Research Progress Status |
令和4年度が最終年度であるため、記入しない。
|
Strategy for Future Research Activity |
令和4年度が最終年度であるため、記入しない。
|
Research Products
(6 results)