2022 Fiscal Year Annual Research Report
透明酸化物薄膜トランジスタによるセンサ・オン・フィルムの創成
Project/Area Number |
20J23326
|
Research Institution | Nara Institute of Science and Technology |
Principal Investigator |
高橋 崇典 奈良先端科学技術大学院大学, 先端科学技術研究科, 特別研究員(DC1)
|
Project Period (FY) |
2020-04-24 – 2023-03-31
|
Keywords | 酸化物半導体 / 薄膜トランジスタ |
Outline of Annual Research Achievements |
酸化物薄膜トランジスタを用いた化学センサについて 検出対象はアミノ酸と生体アミンとした。生体分子の検出信号を電気的信号に変換する酸化物薄膜トランジスタに4-メルカプト安息香酸を自己組織化単分子膜として集積させたAu電極を延長ゲート電極として接続し、センサ機構を構築した。また、Au電極上に成膜した4-メルカプト安息香酸の自己組織化単分子膜の評価として、接触角と仕事関数の評価を実施し、Au表面の修飾状態を確認した。令和4年度はヒスタミンのリアルタイム検出に加えて、他の生体分子 (ヒスチジンやポリアミン類) に対する応答性と選択性の評価を行った。その結果、各種生体分子に対する検出信号には有意な差が確認されており、高信頼性な酸化物薄膜トランジスタは有用なセンサプラットフォームとして期待できる可能性が示された。
酸化物半導体材料の探索と信頼性評価について 酸化物半導体材料の探索については重要な知見が多数得られた。酸化物薄膜トランジスタの信頼性、組成、熱処理温度の関係性を系統的に評価し、正ゲート電圧ストレスに対するしきい値電圧のシフト量は酸化物半導体の組成と熱処理温度に大きく依存しており、過剰酸素などの不純物の振る舞いに差が表れることを実験的に明らかにした。中でもIn-Zn-O系の組成を選択し、組成比を最適化するとで、300℃等のフィルム基板が使用可能な熱処理温度域でも高い信頼性が得られることがわかった。本材料探索の過程において、集積デバイスや強誘電体メモリ等の他のアプリケーションにも適用可能な材料系も発見した。重要な知見については国内会議と国際会議で発表を行った。また、酸化物薄膜トランジスタの光誘起劣化現象についてもデバイス構造に由来する新たな知見が得られた。
|
Research Progress Status |
令和4年度が最終年度であるため、記入しない。
|
Strategy for Future Research Activity |
令和4年度が最終年度であるため、記入しない。
|