• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Estimating Extensive Reading Text Difficulty Using Machine Learning

Research Project

  • PDF
Project/Area Number 20K00800
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 02100:Foreign language education-related
Research InstitutionShinshu University

Principal Investigator

Brierley Mark  信州大学, 全学教育センター, 外国語准教授 (70646877)

Co-Investigator(Kenkyū-buntansha) 新村 正明  信州大学, 学術研究院総合人間科学系, 教授 (20345755)
RUZICKA DAVID  信州大学, 学術研究院総合人間科学系, 准教授 (70436898)
長谷部 めぐみ  信州大学, 学術研究院総合人間科学系, 准教授 (50878725)
Project Period (FY) 2020-04-01 – 2024-03-31
Keywords多読
Outline of Final Research Achievements

We have developed an extensive reading support system and accumulated a substantial amount of data over more than 10 years of operation. This study investigated a method for automatically estimating the difficulty of extensive reading materials using machine learning. Utilizing the accumulated data, we iteratively selected machine learning techniques and formatted data to improve the method's accuracy. The experimental results confirmed the effectiveness of this method, suggesting it as a valuable tool for extensive reading learners.

Free Research Field

Extensive Reading

Academic Significance and Societal Importance of the Research Achievements

本研究では、多読図書の難易度を自動推定するシステムの開発に向けた基礎研究を行い、難易度のパラメータを解明しました。学術的には、多読学習の効果を定量的に評価する新しい知見を提供しました。社会的には、学習者が適切な難易度の図書を選択することで、語学力の向上を支援し、教育の質を高める可能性があります。この研究は、教育機関や公共図書館での応用が期待されます。

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi