• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Research-status Report

Representation theory of elliptic quantum groups and symplectic duality

Research Project

Project/Area Number 20K03507
Research InstitutionTokyo University of Marine Science and Technology

Principal Investigator

今野 均  東京海洋大学, 学術研究院, 教授 (00291477)

Project Period (FY) 2020-04-01 – 2023-03-31
Keywords楕円量子群 / トロイダル代数 / 楕円量子トロイダル代数 / vertex function / W-代数 / 超対称ゲージ理論 / 楕円コホモロジー / 楕円種数
Outline of Annual Research Achievements

昨年度に続き, gl_1型の楕円量子トロイダル代数の構造の解明と表現の構成, 超対称ゲージ理論のインスタントン配位との関係について調べた. 代数の構造としては, Z-代数の構造を調べ, 一般の楕円量子群のときと同様に, 楕円変形を受けずに三角関数型の量子トロイダル代数と共通のZ-代数構造があることを示した. また, 新しい表現として, 楕円Ruijsenaars差分作用素を用いてレベル(0,0)表現をn変数ローラン多項式空間上に構成した. さらに, 繋絡頂点作用素の構成をtype IIでも行った. 超対称ゲージ理論との関連に関しては, 昨年得たJordan箙多様体型の変形W代数の生成母関数のtype I繋絡頂点作用素とそのshifted inverse を用いた実現を用いて, 期待値やトレースをとることにより, 複素平面上のn点ヒルベルト概形Hilb_nのヒルツェブルフχ_y-種数 (y=p)や楕円種数が導出できることを示した. Hilb_nの同変K-理論は4次元N=2* U(1)超対称ゲージ理論を5次元への持ち上げた理論のn-インスタントン モジュライ空間であり, そのχ_y-種数のnに関する和はインスタントン分配関数を与える. 一方, Hilb_nの同変楕円コホモロジーに付随する量である楕円種数のnに関する和はゲージ理論をさらに6次元に持ち上げたもののインスタントン分配関数を与える. また, 我々の実現により, Jordan箙型変形W代数の生成母関数の合成積の計算が容易になった. その結果, M個の合成に対しては, 頂点次元がnで枠次元がMのJordan箙多様体の同変K-理論のχ_y-種数や楕円種数が得られることを示した. これらのnに関する和はそれぞれ, 4次元N=2* U(M)超対称ゲージ理論を5次元や6次元へ持ち上げた理論のインスタントン分配関数を与える.

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

gl_1型の楕円量子トロイダル代数の表現に基づいてJordan箙多様体型の変形W代数の定式化ができ, それと超対称ゲージ理論との対応づけを明らかにしたことで, ゲージ理論側で観測されているミラー対称性を楕円量子トロイダル代数の表現を用いて理解できる下地ができたと考える.

Strategy for Future Research Activity

楕円量子トロイダル代数の定式化を一般のトロイダル代数の場合へと拡張する. 特に, gl_N型の場合に表現の構成や繋絡頂点作用素の構成を行い, 期待されるアフィン箙型変形W代数の定式化を行う. また, 対応する箙多様体のχ_y種数や楕円種数の導出の可能性についても調べる. また, 超対称ゲージ理論のインスタントン分配関数との対応についても明らかにしていく. 一方, 前年度の結果を利用して, 楕円q-KZ方程式と双対的になる量子差分方程式について調べ, 量子クーロン枝代数の表現や量子コホモロジーとの関係, 対応する楕円量子可積分系である楕円Ruijsenaars系との関係を楕円量子(トロイダル)群の表現の観点から明らかにしていく.

Causes of Carryover

新型コロナウィルスの世界規模での感染拡大により、招待講演が予定されていた2つの国際会議が延期となった. また, 研究打ち合わせを予定していた米国行きも延期することとしたため. コロナ禍が収束し次第, 米国の研究協力者との研究打ち合わせを行いたいと考える.

  • Research Products

    (3 results)

All 2022 2021

All Journal Article (1 results) (of which Open Access: 1 results) Presentation (2 results) (of which Invited: 2 results)

  • [Journal Article] Elliptic Quantum Toroidal Algebra Uq,t,p(gl_1,tor) and Jordan Quiver Gauge Theories2022

    • Author(s)
      今野 均
    • Journal Title

      RIMS講究録 (掲載決定)

      Volume: - Pages: -

    • Open Access
  • [Presentation] Elliptic Quantum Toroidal Algebra Uq,t,p(gl1,tor) and Affine Quiver Gauge Theories2022

    • Author(s)
      今野 均
    • Organizer
      MS seminar at IPMU
    • Invited
  • [Presentation] Elliptic Quantum Toroidal Algebra Uq,t,p(gl1,tor) and Instanton Calculus in the 5d & 6d Lifts of the N = 2^* Theories2021

    • Author(s)
      今野 均
    • Organizer
      RIMS Workshop, Combinatorial Representation Theory and Connections with Related Fields
    • Invited

URL: 

Published: 2022-12-28  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi