2023 Fiscal Year Research-status Report
Project/Area Number |
20K03565
|
Research Institution | Sophia University |
Principal Investigator |
都築 正男 上智大学, 理工学部, 教授 (80296946)
|
Co-Investigator(Kenkyū-buntansha) |
若槻 聡 金沢大学, 数物科学系, 教授 (10432121)
権 寧魯 九州大学, 基幹教育院, 教授 (30302508)
杉山 真吾 金沢大学, 数物科学系, 准教授 (70821817)
|
Project Period (FY) |
2020-04-01 – 2025-03-31
|
Keywords | Petersson跡公式 / Kloostermann和 |
Outline of Annual Research Achievements |
本年度も研究課題についての実質的な成果を上げるには至らなかった。都築は、Duke-Friedlander-Iwaniecの仕事の精査を開始した。とくに、重さを固定した、変動レベルの正則保形形式のフーリエ係数に対する「large sieve不等式」とその応用を与えた論文を分析した。この論文ではPatersson跡公式をベースとしたlarge sieve不等式の導出が基本となる。その中核は、Kloostermann和の和を古典的な指数関数の等分値に対するlarge sieve 不等式に帰着させるという素朴な発想であるが、これは跡公式の項の構造からみてごく自然なものである。この部分を手掛かりとして、Arthur-Selberg跡公式をベースとしたlarge sieve不等式の導出を試みようとすると、整環の類数やチェビシェフ多項式による通常の幾何サイド(楕円項)の記述において指数和の役割が明示化できていないという点が障害となる。今年度は、この障害が克服できず、その解明は来年度に持ち越すことになった。その他、Kowalski-Iwaniecの著作の対応する章の分析も同時に行った。 GL(3)については、北海道大学で11月に開かれた国際研究集会で発表された韓国の研究者の結果を少し発展させることで、不分岐ヘッケ関数における正則楕円軌道積分の完全公式が得られるとの知見を得たことが一つの収穫であった。(この知見を同研究者に伝えたところ、当該研究に適用可能な形に結果を拡張できたとの知らせを受けた。)
|
Current Status of Research Progress |
Current Status of Research Progress
4: Progress in research has been delayed.
Reason
本研究の初年度においては感染症の影響で対面での研究打ち合わせや、研究の遂行自体が大きく阻害されるか不可能となってしまったことが大きく、本来なら初年度で実施できたような予備的な研究・考察が本年度にまで持ち越されてしまったため。
|
Strategy for Future Research Activity |
来年度は、Arthur-Selberg跡公式に限定するのではなく、より広い視点から(Petersson跡公式を含む)相対跡公式をベースとしてlarge sieve 不等式を導出できないかに取り組むことを目指す。GL(3)の場合のヘッケ作用素の跡公式の導出に取り組む。
|
Causes of Carryover |
当該研究開始初年度から2年程度継続した世界的な感染症の蔓延が大きく影響して、当初の研究費使用予定が大きく狂ってしまった。来年度は、海外から研究者を招聘し、対面での研究打ち合わせ・意見交換を実現する計画である。
|