• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Research-status Report

凸幾何の観点からのシンプレクティック不変量の研究

Research Project

Project/Area Number 20K03576
Research InstitutionIbaraki University

Principal Investigator

入江 博  茨城大学, 理工学研究科(理学野), 准教授 (30385489)

Co-Investigator(Kenkyū-buntansha) 柴田 将敬  名城大学, 理工学部, 准教授 (90359688)
Project Period (FY) 2020-04-01 – 2025-03-31
Keywords幾何学 / 凸体 / 極凸体 / Mahler体積 / 直交群の離散部分群
Outline of Annual Research Achievements

1.ユークリッド空間の内点をもつコンパクト凸集合を凸体という。ユークリッド空間の中心対称な凸体とその極凸体の体積の積(Mahler体積)の下からの評価に関するMahler予想と呼ばれる古典的な未解決問題に取り組み、3次元の場合を2020年に解決したが、この予想の証明のために導入した凸体のMahler体積(volume product)の符号付体積評価とequipartitionの方法を用いて、予想の非対称な場合を考察した。3次元非対称な凸体で位数4の離散群の対称性をもつ場合(2種類ある)に、Mahler体積の下からの最良評価を得た。また、不等式の等号成立条件についても解決の目途がつき、議論の詳細を点検中である。
2.令和3年度に、あるクラスの高次元凸体のMahler体積の下からの最良評価に関してプレプリントを完成させていた。具体的には、凸体が(i)n次元立方体の向きを保つ等長変換のなす直交群の離散部分群の対称性をもつ場合、(ii)n単体の向きを保つ等長変換のなす直交群の離散部分群の対称性をもつ場合である。さらに、等号成立条件の結果も追加して、この論文がInternational Mathematical Research Notice誌から出版された。向きを逆にする対称性も含めて仮定しているF.BartheとM.Fradeliziによる先行研究(2013年)の拡張になっている。
以上の内容は、研究分担者である柴田将敬氏(名城大学)との共同研究である。

Current Status of Research Progress
Current Status of Research Progress

3: Progress in research has been slightly delayed.

Reason

令和5年度は、新型コロナウイルス感染症の影響もほぼなくなり、国内出張はしやすくなった。このため、研究分担者の柴田将敬氏(名城大学)とお互いの研究機関を訪問しての直接の議論は、ほぼ予定通り実施することができた。また、海外出張は、当該年度は1回のみであるが、韓国への研究集会に参加して研究情報収集を行うことができた。しかし、当初計画していた最新の研究情報収集のための欧米への海外出張ができず、課題の進捗がやや遅れている。

Strategy for Future Research Activity

令和6年度も引き続き、研究分担者の柴田氏と月2回のペースでお互いの研究機関を訪問しての対面での議論またはZoomを併用した議論を行う。まず、研究実績の概要の項目1に示した3次元非対称の場合の論文を完成させ、プレプリントの公表を急ぐ。また、新型コロナ関連の規制もほぼ無くなったため、最新の研究情報収集のための欧米への海外出張を行う。

Causes of Carryover

令和5年度は、ほぼ当該年度所要額を使用することができた。しかし、新型コロナ関連の規制の影響により令和2年度と3年度に未使用額が多くあり、その積み残しで次年度使用額が生じている。補助事業期間を1年間延長することにより、当初想定していた出張、特に当該分野の研究の中心地である欧米への海外出張を行い、最新の研究情報を収集して研究を進展させる。

  • Research Products

    (3 results)

All 2024 2023

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (2 results) (of which Int'l Joint Research: 1 results,  Invited: 2 results)

  • [Journal Article] Minimal Volume Product of Convex Bodies with Certain Discrete Symmetries and its Applications2023

    • Author(s)
      Iriyeh Hiroshi、Shibata Masataka
    • Journal Title

      International Mathematics Research Notices

      Volume: 2023 Pages: 18001~18034

    • DOI

      10.1093/imrn/rnac284

    • Peer Reviewed
  • [Presentation] A sharp estimate of the volume product of convex bodies by means of equipartition2024

    • Author(s)
      Hiroshi Iriyeh
    • Organizer
      OIST Workshop Geometric Aspects of Partial Differential Equations
    • Int'l Joint Research / Invited
  • [Presentation] 凸体のMahler体積について2023

    • Author(s)
      入江 博
    • Organizer
      大阪大学理学部数学教室談話会
    • Invited

URL: 

Published: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi